Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 26066-26078, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739559

ABSTRACT

All-solid-state batteries (ASSBs) are safe, high-energy-storage systems. However, despite the progress achieved in the development of high-ionic-conductivity solid electrolytes (SEs), the power performance of ASSBs remains low because of the high interfacial impedances in composite cathodes. Therefore, understanding the interfacial factors is crucial for obtaining high power ASSBs. This study provides a quantitative analysis of the influence of these factors using impedance spectroscopy measurements, which enables the elucidation of the interfacial impedance values of two key parameters, the grain-boundary resistance (ri,gb) and charge-transfer resistance (ri/e). Systematic investigation revealed an unexpected increase in the cathodic resistance with the decrease in the size of the cathode active material (CAM) particles, indicating that even high-reaction-surface-area CAMs yield low ri/e but high ri,gb values owing to their high porosity, resulting in a trade-off relationship. In contrast, this phenomenon is unlikely to occur in liquid-electrolyte-based batteries. Notably, we discuss how composite cathode design impacts performances of stable, high-power, and high-energy ASSBs.

2.
Proc Natl Acad Sci U S A ; 116(39): 19288-19293, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31501346

ABSTRACT

Bacterial cellulose nanofiber (BCNF) with high thermal stability produced by an ecofriendly process has emerged as a promising solution to realize safe and sustainable materials in the large-scale battery. However, an understanding of the actual thermal behavior of the BCNF in the full-cell battery has been lacking, and the yield is still limited for commercialization. Here, we report the entire process of BCNF production and battery manufacture. We systematically constructed a strain with the highest yield (31.5%) by increasing metabolic flux and improved safety by introducing a Lewis base to overcome thermochemical degradation in the battery. This report will open ways of exploiting the BCNF as a "single-layer" separator, a good alternative to the existing chemical-derived one, and thus can greatly contribute to solving the environmental and safety issues.

3.
ChemSusChem ; 7(7): 1870-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24797956

ABSTRACT

We report a new discovery for enhancing the energy density of manganese oxide (Nax MnO2 ) cathode materials for sodium rechargeable batteries by incorporation of aluminum. The Al incorporation results in NaAl(0.1) Mn(0.9) O2 with a mixture of tunnel and layered crystal structures. NaAl(0.1) Mn(0.9) O2 shows a much higher initial discharge capacity and superior cycling performance compared to pristine Na(0.65) MnO2 . We ascribe this enhancement in performance to the formation of a new orthorhombic layered NaMnO2 phase merged with a small amount of tunnel Na(0.44) MnO2 phase in NaAl(0.1) Mn(0.9) O2 , and to improvements in the surface stability of the NaAl(0.1) Mn(0.9) O2 particles caused by the formation of Al-O bonds on their surfaces. Our findings regarding the phase transformation and structure stabilization induced by incorporation of aluminum, closely related to the structural analogy between orthorhombic Na(0.44) MnO2 and NaAl(0.1) Mn(0.9) O2 , suggest a strategy for achieving sodium rechargeable batteries with high energy density and stability.


Subject(s)
Aluminum/chemistry , Electric Power Supplies , Manganese Compounds/chemistry , Oxides/chemistry , Sodium/chemistry , Crystallography, X-Ray , Electrochemistry , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...