Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
J Vet Sci ; 25(2): e22, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38568824

ABSTRACT

BACKGROUND: Achilles tendon is composed of dense connective tissue and is one of the largest tendons in the body. In veterinary medicine, acute ruptures are associated with impact injury or sharp trauma. Healing of the ruptured tendon is challenging because of poor blood and nerve supply as well as the residual cell population. Platelet-rich plasma (PRP) contains numerous bioactive agents and growth factors and has been utilized to promote healing in bone, soft tissue, and tendons. OBJECTIVE: The purpose of this study was to evaluate the healing effect of PRP injected into the surrounding fascia of the Achilles tendon after allograft in rabbits. METHODS: Donor rabbits (n = 8) were anesthetized and 16 lateral gastrocnemius tendons were fully transected bilaterally. Transected tendons were decellularized and stored at -80°C prior to allograft. The allograft was placed on the partially transected medial gastrocnemius tendon in the left hindlimb of 16 rabbits. The allograft PRP group (n = 8) had 0.3 mL of PRP administered in the tendon and the allograft control group (n = 8) did not receive any treatment. After 8 weeks, rabbits were euthanatized and allograft tendons were transected for macroscopic, biomechanical, and histological assessment. RESULTS: The allograft PRP group exhibited superior macroscopic assessment scores, greater tensile strength, and a histologically enhanced healing process compared to those in the allograft control group. CONCLUSIONS: Our results suggest administration of PRP on an allograft tendon has a positive effect on the healing process in a ruptured Achilles tendon.


Subject(s)
Achilles Tendon , Platelet-Rich Plasma , Tendon Injuries , Rabbits , Animals , Achilles Tendon/surgery , Achilles Tendon/injuries , Achilles Tendon/pathology , Tendon Injuries/therapy , Tendon Injuries/veterinary , Tendon Injuries/pathology , Wound Healing , Allografts/pathology
2.
Antioxidants (Basel) ; 13(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38397793

ABSTRACT

Photoaging refers to the accumulation of skin damage which includes wrinkle formation, loss of elasticity, and epidermal thickening due to repeated ultraviolet (UV) irradiation. The present study investigated the protective effects of Elaeagnus umbellata fruit extract (Elaea) on UV-mediated photoaged skin of SKH1 hairless mice and compared the effects of Elaea with ascorbic acid. Although there was no difference in body weight between groups during experimental period, oral administration of 50-200 mg/kg Elaea once daily for 15 weeks significantly prevented an increase in skin weight, epithelial thickening of epidermis, and apoptosis caused by UV irradiation. Skin replica and histopathological analyses revealed that Elaea dose-dependently decreased wrinkle and microfold formation. In addition, Elaea administration restored UV-mediated reduction in type I collagen and hyaluronan through the inhibition of matrix metalloproteinases and p38 mitogen-activated protein kinase expression. Moreover, Elaea suppressed UV-dependent increases in superoxide anion production, fatty acid oxidation, and protein nitration by up-regulating antioxidant system. Furthermore, Elaea alleviated infiltration of inflammatory cells in UV-irradiated skin. The preventive effects of 100 mg/kg Elaea administration against UV-induced photoaging were similar to those by 100 mg/kg ascorbic acid. Collectively, the present study suggests that the E. umbellata fruit is a promising edible candidate to prevent skin photoaging.

3.
Medicina (Kaunas) ; 59(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38004077

ABSTRACT

Background and Objectives: This study evaluated the in vitro anti-adipogenic and anti-inflammatory properties of black cumin (Nigella sativa L.) seed extract (BCS extract) as a potential candidate for developing herbal formulations targeting metabolic disorders. Materials and Methods: We evaluated the BCS extract by assessing its 2,2-diphenyl-1-picrohydrazyl (DPPH) radical scavenging activity, levels of prostaglandin E2 (PGE2) and nitric oxide (NO), and mRNA expression levels of key pro-inflammatory mediators. We also quantified the phosphorylation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPK) signaling molecules. To assess anti-adipogenic effects, we used differentiated 3T3-L1 cells and BCS extract in doses from 10 to 100 µg/mL. We also determined mRNA levels of key adipogenic genes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/BEPα), adipocyte protein 2 (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), and sterol-regulated element-binding protein 1c (SREBP-1c) using real-time quantitative polymerase chain reaction (qPCR). Results: This study showed a concentration-dependent DPPH radical scavenging activity and no toxicity at concentrations up to 30 µg/mL in Raw264.7 cells. BCS extract showed an IC50 of 328.77 ± 20.52 µg/mL. Notably, pre-treatment with BCS extract (30 µg/mL) significantly enhanced cell viability in lipopolysaccharide (LPS)-treated Raw264.7 cells. BCS extract treatment effectively inhibited LPS-induced production of PGE2 and NO, as well as the expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), interleukin (IL)-1ß and IL-6, possibly by limiting the phosphorylation of p38, p65, inhibitory κBα (I-κBα), and c-Jun N-terminal kinase (JNK). It also significantly attenuated lipid accumulation and key adipogenic genes in 3T3-L1 cells. Conclusions: This study highlights the in vitro anti-adipogenic and anti-inflammatory potential of BCS extract, underscoring its potential as a promising candidate for managing metabolic disorders.


Subject(s)
Metabolic Diseases , Nigella sativa , Humans , Animals , Mice , Nigella sativa/metabolism , 3T3-L1 Cells , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Macrophages , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Adipocytes , Seeds , RNA, Messenger/metabolism , Metabolic Diseases/metabolism , Nitric Oxide/metabolism
4.
Mar Drugs ; 21(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37888448

ABSTRACT

Osteoarthritis (OA) is characterized by progressive cartilage destruction and synovitis; however, there are no approved disease-modifying OA drugs. Krill oil (KO) has been reported to possess anti-inflammatory properties and alleviate joint pain in knee OA, indicating its potential to target the inflammatory mechanism of OA. Therefore, the anti-OA effects of KO were investigated in primary chondrocytes and a surgical rat model of knee OA. The oral administration of KO at 200 and 100 mg/kg for 8 weeks improved joint swelling and mobility in the animal model and led to increased bone mineral density and compressive strength in the cartilage. The oral KO doses upregulated chondrogenic genes (type 2 collagen, aggrecan, and Sox9), with inhibition of inflammation markers (5-lipoxygenase and prostaglandin E2) and extracellular matrix (ECM)-degrading enzymes (MMP-2 and MMP-9) in the cartilage and synovium. Consistently, KO treatments increased the viability of chondrocytes exposed to interleukin 1α, accompanied by the upregulation of the chondrogenic genes and the inhibition of the ECM-degrading enzymes. Furthermore, KO demonstrated inhibitory effects on lipopolysaccharide-induced chondrocyte inflammation. Histopathological and immunohistochemical analyses revealed that KO improved joint destruction and synovial inflammation, probably due to the anti-inflammatory, anti-apoptotic, and chondrogenic effects. These findings suggest the therapeutic potential of KO for knee OA.


Subject(s)
Cartilage, Articular , Euphausiacea , Osteoarthritis, Knee , Rats , Animals , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/pathology , Chondrocytes , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cells, Cultured
5.
Mar Drugs ; 21(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37755092

ABSTRACT

Krill oil (KO) shows promise as a natural marine-derived ingredient for improving skin health. This study investigated its antioxidant, anti-inflammatory, anti-wrinkle, and moisturizing effects on skin cells and UVB-induced skin photoaging in hairless mice. In vitro assays on HDF, HaCaT, and B16/F10 cells, as well as in vivo experiments on 60 hairless mice were conducted. A cell viability assay, diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity test, elastase inhibition assay, procollagen content test, MMP-1 inhibition test, and hyaluronan production assay were used to experiment on in vitro cell models. Mice received oral KO administration (100, 200, or 400 mg/kg) once a day for 15 weeks and UVB radiation three times a week. L-Ascorbic acid (L-AA) was orally administered at 100 mg/kg once daily for 15 weeks, starting from the initial ultraviolet B (UVB) exposures. L-AA administration followed each UVB session (0.18 J/cm2) after one hour. In vitro, KO significantly countered UVB-induced oxidative stress, reduced wrinkles, and prevented skin water loss by enhancing collagen and hyaluronic synthesis. In vivo, all KO dosages showed dose-dependent inhibition of oxidative stress-induced inflammatory photoaging-related skin changes. Skin mRNA expressions for hyaluronan synthesis and collagen synthesis genes also increased dose-dependently after KO treatment. Histopathological analysis confirmed that krill oil (KO) ameliorated the damage caused by UVB-irradiated skin tissues. The results imply that KO could potentially act as a positive measure in diminishing UVB-triggered skin photoaging and address various skin issues like wrinkles and moisturization when taken as a dietary supplement.


Subject(s)
Euphausiacea , Skin Aging , Animals , Mice , Mice, Hairless , Hyaluronic Acid/pharmacology , Skin , Collagen/metabolism , Ultraviolet Rays/adverse effects , Ascorbic Acid/pharmacology
6.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37627551

ABSTRACT

Schizandrae Fructus (SF) and Hoveniae Semen cum Fructus (HSCF) have long been used as medicinal herbs for treating various diseases in Asian traditional medicine. In the current study, we investigated the protective effect of fermented SF pomace and HSCF extract 1:1 (w:w) combination mixture (MSH) against carbon tetrachloride (CCl4)-induced acute liver injury mice. After MSH (50-200 mg/kg) oral administration for 7 consecutive days, animals were injected intraperitoneally with CCl4 (0.5 mL/kg). Histopathological observation revealed that administration of MSH synergistically decreased the degeneration of hepatocytes and the infiltration of inflammatory cells induced by CCl4. Moreover, MSH administration reduced the activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase in serum, and mitigated apoptotic cell death in hepatic parenchyma. In addition, MSH alleviated CCl4-mediated lipid peroxidation by restoring endogenous antioxidants capacities including glutathione contents, superoxide dismutase, and catalase activities. In vitro assessments using tert-butyl hydroperoxide-induced oxidative stress in HepG2 cells revealed that MSH protects hepatocytes by lowering ROS generation and lipid peroxidation via upregulating the transcriptional activity of nuclear factor erythroid-2-related factor 2 and the expression of antioxidant genes. Furthermore, MSH synergistically attenuated the expression of proinflammatory cytokines in CCl4-injured liver and lipopolysaccharide-stimulated RAW 264.7 cells. Taken together, these findings suggest that MSH has the potential to prevent acute liver damage by effectively suppressing oxidative stress and inflammation.

7.
Antioxidants (Basel) ; 12(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627597

ABSTRACT

Schizandrae Fructus (SF), fruits of Schisandra chinensis (Turcz.) Baill. and Hoveniae Semen cum Fructus (HSCF), the dried peduncle of Hovenia dulcis Thunb., have long been used for alcohol detoxification in the traditional medicine of Korea and China. In the current study, we aimed to evaluate the potential synergistic hepatoprotective effect of a combination mixture (MSH) comprising fermented SF pomace (fSFP) and HSCF hot water extracts at a 1:1 (w:w) ratio against ethanol-induced liver toxicity. Subacute ethanol-mediated hepatotoxicity was induced by the oral administration of ethanol (5 g/kg) in C57BL/6J mice once daily for 14 consecutive days. One hour after each ethanol administration, MSH (50, 100, and 200 mg/kg) was also orally administered daily. MSH administration significantly reduced the serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase. Histological observation indicated that MSH administration synergistically and significantly decreased the fatty changed region of hepatic parenchyma and the formation of lipid droplet in hepatocytes. Moreover, MSH significantly attenuated the hepatic triglyceride accumulation through reducing lipogenesis genes expression and increasing fatty acid oxidation genes expression. In addition, MSH significantly inhibited protein nitrosylation and lipid peroxidation by lowering cytochrome P450 2E1 enzyme activity and restoring the glutathione level, superoxide dismutase and catalase activity in liver. Furthermore, MSH synergistically decreased the mRNA level of tumor necrosis factor-α in the hepatic tissue. These findings indicate that MSH has potential for preventing alcoholic liver disease through inhibiting hepatic steatosis, oxidative stress, and inflammation.

8.
Metabolites ; 13(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37110159

ABSTRACT

To deal with the adverse effects associated with the use of currently available treatments for metabolic disorders, such as type 2 diabetes, there is a need to find an alternative drug compound. In the present study, we investigated the therapeutic potential of black cumin (Nigella sativa L.) seeds extract (BCS extract) for type 2 diabetes using a 45% Kcal-fed obese mouse model. The BCS extract at different doses (400-100 mg/kg) showed a dose-dependent improvement tendency in high-fat diet (HFD)-induced obesity, non-alcoholic fatty liver disease (NAFLD), hyperlipidemia, and diabetic nephropathy compared to the metformin (250 mg/kg). In particular, BCS extract at a dose of 200 mg/kg significantly inhibited the HFD-induced metabolic conditions. The oral administration of BCS extract (200 mg/kg) significantly inhibited the oxidative stress through lipid peroxidation, normalized the activity of sugar metabolism-related enzymes and the expression of genes involved in fat metabolism, and inhibited insulin resistance through glucose and fat metabolism by regulating the 5'-AMP-activated protein kinase (AMPK) expression. Furthermore, BCS extract (200 mg/kg) showed renal damage improvement effects compared to the metformin (250 mg/kg). The results clearly show that BCS aqueous extract at an appropriate concentration could help in the treatment of metabolic disorders, and BCS aqueous extract can be used as a functional food for various diabetic complications, such as obesity, diabetes, and NAFLD.

9.
Antioxidants (Basel) ; 12(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37107297

ABSTRACT

Adenophora stricta Miq. (Campanulaceae family) is a traditional herb used for relieving cough and phlegm in East Asia. This study explored the effects of A. stricta root extract (AsE) in ovalbumin (OVA)-induced allergic asthma and lipopolysaccharide (LPS)-stimulated macrophages. Administration of 100-400 mg/kg AsE dose-dependently decreased pulmonary congestion and suppressed the reduction of alveolar surface area in mice with OVA-mediated allergic asthma. Histopathological analysis of lung tissue and cytological analysis of bronchioalveolar lavage fluid showed that AsE administration significantly attenuated inflammatory cell infiltration into the lungs. In addition, AsE also alleviated OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5 production, which are essential for OVA-dependent activation of T helper 2 lymphocytes. In Raw264.7 macrophage cells, AsE significantly blocked nitric oxide, tumor necrosis factor-α, IL-1ß, IL-6, and monocyte chemoattractant factor-1 production in response to LPS. Results from an immunoblot assay revealed that AsE inhibited the phosphorylation of c-jun N-terminal kinase, inhibitory-κB kinase α/ß, and p65 in LPS-stimulated cells. Furthermore, 2-furoic acid, 5-hydroxymethylfurfural, and vanillic acid 4-ß-D-glucopyranoside in AsE were shown to inhibit the production of proinflammatory mediators by LPS. Taken together, the present results suggest that A. stricta root will be a useful herb for relieving allergic asthma through managing airway inflammation.

10.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38275632

ABSTRACT

The effects of coffee (Coffea arabica L.) berry pulp extracts (CBP extracts) on the improvement of diabetes, obesity, and non-alcoholic fatty liver disease (NAFLD) were evaluated using various in vitro antioxidant activity assays and through a high-fat diet-induced mild diabetic obese mouse model. After an 84-day oral administration of CBP extracts (400-100 mg/kg), bioactivities were evaluated. The in vitro analysis showed the highest DPPH● scavenging activity of 73.10 ± 4.27%, ABTS● scavenging activity of 41.18 ± 1.14%, and SOD activity of 56.24 ± 2.81%, at a CBP extract concentration of 1000 µg/mL. The in vivo analysis of the CBP extracts showed favorable and dose-dependent anti-obesity, anti-diabetic, NAFLD, nephropathy, and hyperlipidemia refinement effects through hepatic glucose enzyme activity, 5'-AMP-activated protein kinase (AMPK) up-regulation, antioxidant activity, lipid metabolism-related gene expression, and pancreatic lipid digestion enzyme modulatory activities. This study shows that an appropriate oral dosage of CBP extracts could function as a potent herbal formulation for a refinement agent or medicinal food ingredient to control type 2 diabetes and related complications.

11.
Mar Drugs ; 20(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36005486

ABSTRACT

Obesity increases the risks of metabolic syndromes including nonalcoholic fatty liver disease (NAFLD), diabetic dyslipidemia, and chronic kidney disease. Dietary krill oil (KO) has shown antioxidant and anti-inflammatory properties, thereby being a therapeutic potential for obesity-induced metabolic syndromes. Thus, the effects of KO on lipid metabolic alteration were examined in a high-fat diet (HFD)-fed mice model. The HFD model (n = 10 per group) received an oral gavage with distilled water as a control, metformin at 250 mg/kg, and KO at 400, 200, and 100 mg/kg for 12 weeks. The HFD-induced weight gain and fat deposition were significantly reduced in the KO treatments compared with the control. Blood levels were lower in parameters for NAFLD (e.g., alanine aminotransferase, and triglyceride), type 2 diabetes (e.g., glucose and insulin), and renal dysfunction (e.g., blood urea nitrogen and creatinine) by the KO treatments. The KO inhibited lipid synthesis through the modification of gene expressions in the liver and adipose tissues and adipokine-mediated pathways. Furthermore, KO showed hepatic antioxidant activities and glucose lowering effects. Histopathological analyses revealed that the KO ameliorated the hepatic steatosis, pancreatic endocrine/exocrine alteration, adipose tissue hypertrophy, and renal steatosis. These analyses suggest that KO may be promising for inhibiting obesity and metabolic syndromes.


Subject(s)
Diabetes Mellitus, Type 2 , Euphausiacea , Insulin Resistance , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Liver , Metabolic Syndrome/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Triglycerides/metabolism
12.
Antioxidants (Basel) ; 11(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35883867

ABSTRACT

Chronic exposure of particulate matter of less than 2.5 µm (PM2.5) has been considered as one of the major etiologies for various respiratory diseases. Adenophora stricta Miq. is a medicinal herb that has been used for treating respiratory diseases in East Asia. The present study investigated the effect of A. stricta root extract (AsE) on PM2.5-induced lung injury in mice. Oral administration of 100-400 mg/kg AsE for 10 days significantly reduced the PM2.5-mediated increase in relative lung weight, but there was no difference in body weight with AsE administration. In addition, AsE dose-dependently decreased congested region of the lung tissue, prevented apoptosis and matrix degradation, and alleviated mucus stasis induced by PM2.5. Moreover, cytological analysis of bronchioalveolar lavage fluid revealed that AsE significantly inhibited the infiltration of immune cells into the lungs. Consistently, AsE also decreased expression of proinflammatory cytokines and chemokines in lung tissue. Furthermore, AsE administration blocked reactive oxygen species production and lipid peroxidation through attenuating the PM2.5-dependent reduction of antioxidant defense system in the lungs. Therefore, A. stricta root would be a promising candidate for protecting lung tissue from air pollution such as PM2.5.

13.
Antioxidants (Basel) ; 11(4)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35453415

ABSTRACT

We recently reported that varying combination ratios of lemon balm (Mellissa officinalis L.) and corn silk extracts (Stigma of Zea mays L. fruit) could reduce the obesity caused by a high-fat diet (HFD). The present study investigated the dose-dependent effect of a 1:1 (w:w) mixture of lemon balm and corn silk extracts (M-LB/CS) on HFD-mediated metabolic disorders and compared the effect with metformin. Oral administration of 50-200 mg/kg of M-LB/CS for 84 days significantly inhibited HFD-induced body weight gain, adipocyte hypertrophy, and lipogenic gene induction without affecting food consumption in mice. Biochemical analyses showed that M-LB/CS blocked abnormal lipid accumulation in the blood by escalating fecal lipid excretion. In addition, M-LB/CS prevented HFD-mediated pancreatic atrophy, decreased the number of insulin- and glucagon-immunoreactive cells, and inhibited increases in glycated hemoglobin, glucose, and insulin. Moreover, M-LB/CS also reduced hepatic injury, lipid accumulation, gluconeogenesis, and lipid peroxidation in parallel with the induction of AMP-activated protein kinase and antioxidant enzymes. Furthermore, M-LB/CS protected the kidney by inhibiting tubular vacuolation and reducing serum creatinine and blood urea nitrogen levels. The prophylactic effect of 100 mg/kg M-LB/CS-administration was comparable to that of metformin. Therefore, M-LB/CS may be an alternative option for managing obesity and its related metabolic disorders.

14.
Antioxidants (Basel) ; 11(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35326230

ABSTRACT

Metformin, the first-line drug for type 2 diabetes mellitus (T2DM), has additional effects on improvements of nonalcoholic fatty liver disease (NAFLD); however, there are no treatments for both T2DM and NAFLD. Previous studies have shown hepatoprotective effects of a mixture of lemon balm and dandelion (LD) through its antioxidant and anti-steatosis properties. Thus, combination effects of metformin and LD were examined in a high-fat diet (HFD)-induced metabolic disease mouse model. The model received an oral administration of distilled water, monotherapies of metformin and LD, or a metformin combination with LD for 12 weeks. The HFD-induced weight gain and body fat deposition were reduced more by the combination than either monotherapy. Blood parameters for NAFLD (i.e., alanine aminotransferase and triglyceride), T2DM (i.e., glucose and insulin), and renal functions (i.e., blood urea nitrogen and creatinine) were reduced in the combination. The combination further enhanced hepatic antioxidant activities, and improved insulin resistance via the AMP-activated protein kinase and lipid metabolism pathways. Histopathological analyses revealed that the metformin combination ameliorated the hepatic hypertrophy/steatosis, pancreatic endocrine/exocrine alteration, fat tissue hypertrophy, and renal steatosis, more than either monotherapy. These results suggest that metformin combined with LD can be promising for preventing and treating metabolic diseases involving insulin resistance.

15.
Medicina (Kaunas) ; 58(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35208513

ABSTRACT

Background and Objectives: The currently used pharmacological agents for metabolic disorders such as type II diabetes have several limitations and adverse effects; thus, there is a need for alternative therapeutic drugs and health functional foods. Materials and Methods: This study investigated the pharmacological effects of water chestnut (fruit of Trapa japonica) extracts (WC: 50-200 mg/kg) for type II diabetes using a 45% Kcal high-fat diet (HFD)-fed type II obese diabetic mice model for a period of 84 days, and the effects were compared to those of metformin (250 mg/kg). Results: Increases in body weight, serum biochemical indices such as triglycerides, low-density lipoprotein, and blood urea nitrogen, increases in antioxidant defense system enzymes such as catalase, superoxide dismutase, and glutathione, and mRNA expressions (such as AMPKα1 and AMPKα2) in the liver tissue and mRNA expressions (such as AMPKα2 mRNA, leptin, and C/EBPα) in the adipose tissue were observed in the HFD control group. The WC (50 mg/kg)-administered group showed no significant improvements in diabetic complications. However, HFD-induced obesity and diabetes-related complications such as hyperlipidemia, diabetic nephropathy, nonalcoholic fatty liver disease (NAFLD), oxidative stress, activity of antioxidant defense systems, and gene expressions were significantly and dose-dependently inhibited and/or normalized by oral administration of WC (100 mg/kg and 200 mg/kg), particularly at a dose of 100 mg/kg. Conclusions: The results of this study suggest that WC at an appropriate dose could be used to develop an effective therapeutic drug or functional food for type II diabetes and various associated complications, including NAFLD.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Fruit , Liver , Mice, Obese , Obesity/complications , Obesity/drug therapy , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
16.
Antioxidants (Basel) ; 10(12)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34943118

ABSTRACT

Lemon balm and corn silk are valuable medicinal herbs, which exhibit variety of beneficial effects for human health. The present study explored the anti-obesity effects of a mixture of lemon balm and corn silk extracts (M-LB/CS) by comparison with the effects of single herbal extracts in high-fat diet (HFD)-induced obesity in mice. HFD supplementation for 84 days increased the body weight, the fat mass density, the mean diameter of adipocytes, and the thickness of fat pads. However, oral administration of M-LB/CS significantly alleviated the HFD-mediated weight gain and adipocyte hypertrophy without affecting food consumption. Of the various combination ratios of M-LB/CS tested, the magnitude of the decreases in weight gain and adipocyte hypertrophy by administration of 1:1, 1:2, 2:1, and 4:1 (w/w) M-LB/CS was more potent than that by single herbal extracts alone. In addition, M-LB/CS reduced the HFD-mediated increases in serum cholesterol, triglyceride, and low-density lipoprotein, prevented the reduction in serum high-density lipoprotein, and facilitated fecal excretion of cholesterol and triglyceride. Moreover, M-LB/CS mitigated the abnormal changes in specific mRNAs associated with lipogenesis and lipolysis in the adipose tissue. Furthermore, M-LB/CS reduced lipid peroxidation by inhibiting the HFD-mediated reduction in glutathione, catalase, and superoxide dismutase. Therefore, M-LB/CS is a promising herbal mixture for preventing obesity.

17.
Antioxidants (Basel) ; 10(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34679678

ABSTRACT

Ferroptosis is a type of programmed necrosis triggered by iron-dependent lipid peroxidation. We investigated the role of B-cell translocation gene 1 (BTG1) in cystine and methionine deficiency (CST/Met (-))-mediated cell death. CST/Met (-) depleted reduced and oxidized glutathione in hepatocyte-derived cells, increased prostaglandin-endoperoxide synthase 2 expression, and promoted reactive oxygen species accumulation and lipid peroxidation, as well as necrotic cell death. CST/Met (-)-mediated cell death and lipid peroxidation was specifically inhibited by pretreatment with ferroptosis inhibitors. In parallel with cell death, CST/Met (-) blocked global protein translation and increased the expression of genes associated with the integrated stress response. Moreover, CST/Met (-) significantly induced BTG1 expression. Using a BTG1 promoter-harboring reporter gene and siRNA, activating transcription factor 4 (ATF4) was identified as an essential transcription factor for CST/Met (-)-mediated BTG1 induction. Although knockout of BTG1 in human HAP1 cells did not affect the accumulation of reactive oxygen species induced by CST/Met (-), BTG1 knockout significantly decreased the induction of genes associated with the integrated stress response, and reduced lipid peroxidation and cell death in response to CST/Met (-). The results demonstrate that CST/Met (-) induces ferroptosis by activating ATF4-dependent BTG1 induction.

18.
Medicina (Kaunas) ; 57(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066110

ABSTRACT

Background and Objectives: The present study investigated the beneficial effects of tart cherry (fruit of Prunus cerasus) concentrated powder (TCcp) on glucocorticoid (GLU)-induced catabolic muscular atrophy in the skeletal muscle of mice. Furthermore, its potential mechanism was also studied. Materials and Methods: Changes in calf thickness, calf muscle weight, calf muscle strength, body weight, gastrocnemius muscle histology, immunohistochemistry, serum creatinine, creatine kinase, lactate dehydrogenase, and antioxidant defense systems were measured. Malondialdehyde, reactive oxygen species, glutathione content, catalase, and superoxide dismutase activities in the gastrocnemius muscle, and muscle-specific mRNA expressions were evaluated. Results: After 24 days, GLU control mice showed muscular atrophy at all criteria of indexes. The muscular atrophy symptoms were significantly inhibited by oral treatment with 250 mg/kg and 500 mg/kg of TCcp through antioxidative and anti-inflammatory modulated expression of genes involved in muscle protein degradation (myostatin, atrogin-1, SIRT1, and MuRF1) and synthesis (A1R, Akt1, TRPV4, and PI3K). Conclusions: This study shows that the TCcp (500 mg/kg and 250 mg/kg) could improve muscular atrophies caused by various etiologies.


Subject(s)
Fruit , Prunus avium , Animals , Glucocorticoids , Mice , Muscle, Skeletal/pathology , Muscular Atrophy/chemically induced , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Powders , TRPV Cation Channels
19.
J Agric Food Chem ; 69(22): 6214-6228, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-33950680

ABSTRACT

The aim of the current study is to investigate the effects of spray dry powders of Curcuma longa containing 40% curcumin (CM-SD), as a new aqueous curcumin formula, on sarcopenia in chronic forced exercise executed 10 month old ICR mice. CM-SD (80 and 40 mg/kg) increased calf thicknesses and strengths, total body and calf protein amounts, and muscle weights in both gastrocnemius and soleus muscles. mRNA expressions regarding muscle growth and protein synthesis were induced, while those of muscle degradation significantly declined in CM-SD treatment. CM-SD decreased serum biochemical markers, lipid peroxidation, and reactive oxygen species and increased endogenous antioxidants and enzyme activities. It also reduced immunoreactive myofibers for apoptosis and oxidative stress markers but increased ATPase in myofibers. These results suggest that CM-SD can be an adjunct therapy to exercise-based remedy that prevents muscle disorders including sarcopenia by anti-apoptosis, anti-inflammation, and antioxidation-mediated modulation of gene expressions related to muscle degradation and protein synthesis.


Subject(s)
Curcumin , Sarcopenia , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Curcumin/pharmacology , Mice , Mice, Inbred ICR , Muscle, Skeletal/metabolism , Oxidative Stress , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/prevention & control
20.
Antioxidants (Basel) ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802935

ABSTRACT

The purpose of the current study was to investigate antioxidant and anti-inflammatory effects of spray dry powder containing 40% curcumin (CM-SD) in C2C12 myoblast cells. CM-SD increased DPPH radical scavenging activity in a dose-dependent manner, and up to 30 µg/mL of CM-SD did not express cytotoxicity in C2C12 cells. Exposure to hydrogen peroxide (H2O2) drastically decreased the viability of C2C12 cells, but pre-treatment of CM-SD significantly increased the cell viability (p < 0.01). CM-SD significantly transactivated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent luciferase activity in a dose-dependent manner and enhanced the levels of heme oxygenase (HO)-1, glutamate cysteine ligase catalytic subunit (GCLC), and NAD(P)H-dependent quinone oxidoreductase (NQO)-1. CM-SD also significantly reduced reactive oxygen species (ROS) production and lipid peroxidation and restored glutathione (GSH) depletion in H2O2-treated C2C12 cells. Moreover, CM-SD significantly reduced lipopolysaccharides (LPS)-mediated interleukin (IL)-6 production in the conditioned medium. Results from the current study suggest that CM-SD could be a useful candidate against oxidative stress and inflammation-related muscle disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...