Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20713, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001260

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease. Accurately predicting the survival time for ALS patients can help patients and clinicians to plan for future treatment and care. We describe the application of a machine-learned tool that incorporates clinical features and cortical thickness from brain magnetic resonance (MR) images to estimate the time until a composite respiratory failure event for ALS patients, and presents the prediction as individual survival distributions (ISDs). These ISDs provide the probability of survival (none of the respiratory failures) at multiple future time points, for each individual patient. Our learner considers several survival prediction models, and selects the best model to provide predictions. We evaluate our learned model using the mean absolute error margin (MAE-margin), a modified version of mean absolute error that handles data with censored outcomes. We show that our tool can provide helpful information for patients and clinicians in planning future treatment.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Probability , Brain , Learning , Disease Progression
2.
Sci Rep ; 12(1): 4472, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296767

ABSTRACT

Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates-age, sex, geographic location, and chronic disease status-in learning survival models (here, "Individual Survival Distributions"; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the "gradient boosting Cox machine" algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual's likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research.


Subject(s)
COVID-19 , Patient Discharge , COVID-19/epidemiology , Hospitals , Humans , Machine Learning , Triage/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...