Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 117(3): 775-782, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29423531

ABSTRACT

Toxocara canis is a zoonotic parasite with worldwide distribution. ATP-binding cassette (ABC) transporters are integral membrane proteins which involve in a range of biological processes in various organisms. In present study, the full-length coding sequence of abcg-5 gene of T. canis (Tc-abcg-5) was cloned and characterized. A 633 aa polypeptide containing two conserved Walker A and Walker B motifs was predicted from a continuous 1902 nt open reading frame. Quantitative real-time PCR was employed to determine the transcriptional levels of Tc-abcg-5 gene in adult male and female worms, which indicated high mRNA level of Tc-abcg-5 in the reproductive tract of adult female T. canis. Tc-abcg-5 was expressed to produce rabbit polyclonal antiserum against recombinant TcABCG5. Indirect-fluorescence immunohistochemical assays were carried out to detect the tissue distribution of TcABCG5, which showed predominant distribution of TcABCG5 in the uterus (especially in the germ cells) of adult female T. canis. Tissue transcription and expression pattern of Tc-abcg-5 indicated that Tc-abcg-5 might play essential roles in the reproduction of this parasitic nematode.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5/biosynthesis , Toxocara canis/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Animals , Dog Diseases/parasitology , Dogs , Female , Male , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reproduction , Tissue Distribution , Toxocara canis/isolation & purification , Toxocara canis/physiology , Toxocariasis/parasitology , Transcription, Genetic , Uterus/metabolism
2.
Nat Prod Bioprospect ; 6(3): 155-60, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27038619

ABSTRACT

Three new drimane sesquiterpenoids (1-3) together with the known 2α-hydroxyisodrimeninol (4), and a new isochromone derivative (5), were obtained from the solid cultures of fungal strain Pestalotiopsis sp. M-23, an endophytic fungus isolated from the leaves of Leucosceptrum canum (Labiatae). Their structures were determined by comprehensive 1D and 2D NMR, and MS analyses. The metabolites were evaluated for their antibacterial activities, and compound 3 showed weak inhibitory activity against Bacillus subtilis.

3.
Plant Cell ; 28(3): 804-22, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26941091

ABSTRACT

Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms.


Subject(s)
Farnesyltranstransferase/metabolism , Mentha/enzymology , Spodoptera/physiology , Terpenes/metabolism , Amino Acid Sequence , Animals , Erythritol/analogs & derivatives , Erythritol/metabolism , Farnesyltranstransferase/genetics , Mentha/chemistry , Mentha/genetics , Organ Specificity , Phylogeny , Seedlings/chemistry , Seedlings/enzymology , Seedlings/genetics , Sequence Alignment , Sugar Phosphates/metabolism , Terpenes/chemistry , Trichomes/chemistry , Trichomes/enzymology , Trichomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...