Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 439
Filter
1.
Fitoterapia ; 179: 106233, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326795

ABSTRACT

Polygala japonica Houtt. (P. japonica), a member of the Polygala genus in the Polygalaceae family, has been historically utilized in traditional folk medicine as an expectorant, anti-inflammatory, anti-bacterial, and anti-depressant agent. This paper systematically reviews the latest research in botany, traditional uses, phytochemistry, pharmacology, and pharmacokinetics, aiming to provide a scientific foundation for the future development and application of P. japonica and to explore its potential value comprehensively. Approximately 86 compounds have been isolated from P. japonica, with triterpenoid saponins being the most prevalent and bioactive components. Extensive pharmacological activities of P. japonica extracts or compounds have been confirmed in vivo and in vitro, including anti-inflammatory, anti-depressant, neuroprotective, anti-obesity, anti-apoptotic, and skin-protective effects. Additionally, P. japonica has demonstrated significant curative effects and relatively clear pharmacological mechanisms in treating inflammatory and nervous system diseases. Specific components of its primary triterpenoid saponins are rapidly absorbed in the body. This review advocates for deeper scientific research on P. japonica, noting that most current research remains in its early stages and many reported biological activities require further clinical validation. Despite this, the traditional medical use of P. japonica across various cultures attests to its broad application value. Presently, the pharmacological activities of P. japonica extracts and compounds provide a scientific basis for its traditional uses. Future research must ensure the safety and effectiveness of P. japonica through in-depth pharmacokinetic studies, and the establishment of a refined and standardized quality evaluation system is essential for its clinical development and application.

2.
Front Pharmacol ; 15: 1440979, 2024.
Article in English | MEDLINE | ID: mdl-39239653

ABSTRACT

Chelidonium majus L. (C. majus), commonly known as "Bai Qu Cai" in China, belongs to the genus Chelidonium of the Papaveraceae family. It has rich medicinal value, such as alleviating coughs, asthma, spasms and pain. Recent studies have demonstrated that C. majus is abundant in various alkaloids, which are the primary components of C. majus and have a range of pharmacological effects, including anti-microbial, anti-inflammatory, anti-viral, and anti-tumor effects. So far, 94 alkaloids have been isolated from C. majus, including benzophenanthridine, protoberberine, aporphine, protopine and other types of alkaloids. This paper aims to review the research progress in phytochemistry, pharmacology and toxicology of C. majus alkaloids, in order to provide a theoretical basis for the application of C. majus in the field of medicinal chemistry and to afford reference for further research and development efforts.

3.
Front Pharmacol ; 15: 1421662, 2024.
Article in English | MEDLINE | ID: mdl-39221141

ABSTRACT

Eucommia ulmoides (EU) is a precious tree species native to China originating during the ice age. This species has important economic value and comprehensive development potential, particularly in medicinal applications. The medicinal parts of EU are its bark (Eucommiae cortex) and leaves (Eucommiae folium) which have been successively used as a traditional Chinese medicine to treat diseases since the first century BC. During the last 2 decades, as natural polysaccharides have become of increasing interest in pharmacology, biomedicine, cosmetic and food applications, more and more scholars have begun to study polysaccharides derived from EU as well. EU polysaccharides have been found to have a variety of biological functions both in vivo and in vitro, including immunomodulatory, antioxidant, anti-inflammatory, anticomplementary, antifatigue, and hepatoprotective activities. This review aims to summarize these recent advances in extraction, purification, structural characteristics, pharmacological activities and applications in different fields of EU bark and leaf polysaccharides. It was found that both Eucommiae folium polysaccharides and Eucommiae cortex polysaccharides were suitable for medicinal use. Eucommiae folium may potentially be used to substitute for Eucommiae cortex in terms of immunomodulation and antioxidant activities. This study serves as a valuable reference for improving the comprehensive utilization of EU polysaccharides and further promoting the application of EU polysaccharides.

4.
Carbohydr Polym ; 346: 122644, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245531

ABSTRACT

A complex heteropolysaccharide SCP-2 named schisanan B (Mw = 1.005 × 105 g/mol) was obtained from water extracts of Schisandra chinensis fruits, and its planar structure was finally deduced as a galacturonoglucan by a combination of monosaccharide compositions, methylation analysis, partial acid hydrolysis, enzymatic hydrolysis and 1D/2D-nuclear magnetic resonance spectroscopy. The conformation of SCP-2 exhibited a globular shape with branching in ammonium formate aqueous solutions. The rheological properties of SCP-2 were investigated on concentrations, temperature, pH and salts. The in vitro immunomodulatory activity assay demonstrated that SCP-2 significantly enhanced the production of nitric oxide (NO) and stimulated the secretion of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in macrophages. Through a combination of high-resolution live-cell imaging, surface plasmon resonance, and molecular docking techniques, SCP-2 exhibited a strong binding affinity with the Toll-like receptor 4 (TLR4). Moreover, western blot analysis revealed that SCP-2 effectively induced downstream signaling proteins associated with TLR4 activation, thereby promoting macrophage activation. The evidence strongly indicates that TLR4 functions as a membrane protein target in the activation of macrophages and immune regulation induced by SCP-2.


Subject(s)
Fruit , Rheology , Schisandra , Toll-Like Receptor 4 , Schisandra/chemistry , Mice , Fruit/chemistry , RAW 264.7 Cells , Animals , Toll-Like Receptor 4/metabolism , Molecular Docking Simulation , Nitric Oxide/metabolism , Macrophages/drug effects , Macrophages/metabolism , Pectins/chemistry , Tumor Necrosis Factor-alpha/metabolism , Glucans/chemistry , Interleukin-6/metabolism
5.
Int J Biol Macromol ; 279(Pt 2): 135250, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222778

ABSTRACT

Artemisia argyi Levl. et Vant. (A. argyi) is an important member of Asteraceae (Compositae) family, which has good medicinal potential and edible value. Phytochemical studies have shown that the A. argyi has a variety of bioactive components, mainly including polysaccharides, flavonoids, alkaloids, and volatile oil. More and more evidences show that A. argyi polysaccharide is a kind of representative pharmacological and biological active macromolecules, which has a variety of pharmacological activities in vitro and in vivo, such as estrogen-like effect, anti-bacterial, anti-tumor, anti-oxidant and immune regulation effect. As far as we know, there are few comprehensively reviews on A. argyi polysaccharide. This review aims to comprehensively and systematically review the research progress on the extractions and purifications, structural characteristics, pharmacological activities, structure-activity relationships, existing and potential applications of A. argyi polysaccharides in the past 12 years, in order to support their therapeutic potential and health functions. Finally, prospects were made for the further development and utilization of A. argyi polysaccharides in four fields: food, medicine, packaging materials, and daily chemicals.

6.
Int J Biol Macromol ; 278(Pt 3): 134823, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39168226

ABSTRACT

In our previous study, bile Arisaema was elucidated to have a significant anti-febrile effect, but the pharmacodynamic material basis of this effect remains uncertain. Herein, we found that the soluble polysaccharide fraction from bile Arisaema presents a remarkable antipyretic effect through balancing the gut microbiota and regulating metabolic profiling. Bile Arisaema polysaccharide (BAP) was characterized for its monosaccharide composition with arabinose, galactose, glucose, mannose and xylose (0.028:0.072:0.821:0.05:0.029, molar ratios) and amino acid composition with arginine, threonine, alanine, glycine, serine, proline and tyrosine (109.33, 135.78, 7.22, 8.86, 21.07, 4.96, 12.31 µg/mg). A total of 50 peptides were identified from BAP using Ltq-Orbitrap MS/MS. The oral administration of 100 mg/kg BAP significantly increased the antipyretic effect in yeast-induced fever rats by comparing the rectal temperature. Mechanistically, the inflammation and disorders of neurotransmitters caused by fever were improved by treatment with BAP. The western blotting results suggested that BAP could suppress fever-induced inflammation by down-regulating the NF-κB/TLR4/MyD88 signaling pathway. We also demonstrated that BAP affects lipid metabolism, amino acid metabolism and carbohydrate metabolism and balances the gut microbiota. In summary, the present study provides a crucial foundation for determining polysaccharide activity in bile Arisaema and further investigating the underlying mechanism of action.


Subject(s)
Antipyretics , Gastrointestinal Microbiome , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Rats , Antipyretics/pharmacology , Antipyretics/chemistry , Male , Fever/drug therapy , Metabolome/drug effects , Bile/metabolism , Bile/chemistry , Rats, Sprague-Dawley , Metabolomics , Signal Transduction/drug effects , Yeasts
7.
Int J Biol Macromol ; 278(Pt 3): 134919, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39179070

ABSTRACT

Chrysanthemum morifolium Ramat. (C. morifolium), as a traditional ornamental plant, it has multiple values, including edible, economic, nutritional and even medicinal values, which is used as herbal medicine and a new food resource in the world. Polysaccharides are one of the main bioactive components in C. morifolium, which have various health benefits such as improving functional constipation, improving colitis, anti-glycosylation, antioxidant, anti-angiogenesis, immunomodulation, prebiotic, and α-glucosidase inhibitory activities. This paper describes the extraction, purification, structural characteristics, health benefits, structural-activity relationships, applications, and analyses the shortcomings of the major relevant studies exist on C. morifolium polysaccharides. In addition, the potential mechanisms of the health benefits of C. morifolium polysaccharides were summarized. This study can provide reference and direction for further research and development of C. morifolium polysaccharides.


Subject(s)
Chrysanthemum , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Chrysanthemum/chemistry , Structure-Activity Relationship , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Humans , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification
8.
Front Pharmacol ; 15: 1428558, 2024.
Article in English | MEDLINE | ID: mdl-39101136

ABSTRACT

Hyperuricemia (HUA) is a common chronic metabolic disease caused by abnormal purine metabolism and uric acid excretion. Despite extensive research on HUA, no clear treatment has been found so far. Improving purine metabolism and promoting uric acid excretion is crucial for the effective treatment of HUA. In recent years, traditional Chinese medicine and traditional Chinese medicine prescriptions have shown good effects in treating HUA. This article summarizes the latest progress in treating HUA in rats and mice using traditional Chinese medicine and prescriptions, elaborates on the pathogenesis of HUA, explores the application of commonly used traditional Chinese medicine treatment methods and prescriptions, and discusses the previous pharmacological mechanisms. In general, our research indicates that traditional Chinese medicine can effectively relieve the symptoms related to elevated uric acid levels in HUA rats and mice. However, further exploration and research are needed to verify its efficacy, safety, and feasibility.

9.
Front Nutr ; 11: 1422857, 2024.
Article in English | MEDLINE | ID: mdl-39119464

ABSTRACT

Background: The bulbs of Allium sativum are widely used as food or seasoning (garlic), while they have also been utilized as a famous traditional medicine since ancient eras for the treatment of scabies, tuberculosis, pertussis, diarrhea and dysentery, etc. However, very few studies focus on their abundant aerial parts, which are normally discarded during the harvest season. Methods: The hyperlipidemic mice model has been used to study the lipid-lowering effect of the aerial parts in this article. 180 mice were randomly divided into 18 groups, including blank control (BC), model (Mod), positive control (PC), and low-, medium-, and high-dose groups of the crude extract, petroleum ether, ethyl acetate, n-butanol, and residual water extracts (corresponding to CE, PEE, EAE, NBE, WE), with 10 mice in each group. The preventive effects of the extracts on hyperlipidemic mice lasted for four weeks. Ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and gas chromatography tandem mass spectrometry (GC-MS/MS) were used to analyze the chemical components of NBE and PEE respectively. Results: The results of the mice experiment showed that n-butanol extract (NBE) and petroleum ether extract (PEE) from the aerial parts could significantly reduce the contents of total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT) and aspartate transaminase (AST) in serum of hyperlipidemic mice, and increase the contents of high density lipoprotein cholesterol (HDL-C). They could enhance the activity of superoxide dismutase (SOD) in liver and reduce the level of malondialdehyde (MDA). At the same time, they could improve steatosis and inflammation of liver cells. The results of phytochemical components analysis showed that NBE was rich in organic acids, flavonoids and nitrogen-containing constituents, while PEE contained organic sulfur compounds, aliphatic acids and derivatives, alkaloids, phytosterols, etc. Conclusion: These results support that the aerial parts of A. sativum are an interesting source of bioactive ingredients that may be useful in the prevention and treatment of hyperlipidemia.

10.
Biomed Chromatogr ; : e5989, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171645

ABSTRACT

Epilepsy (EP) is one of the most common neurological diseases in the world. Anemarrhena asphodeloides Bunge. (AA), as a typical heat-cleaning medicine, has been proven to possess the antiepileptic effect in clinical and experimental studies. Anemarrhena asphodeloides steroidal saponins (AAS) are main components. However, the therapeutic effects and underlying mechanisms of AAS against EP are not been fully elucidated. In this study, 63 steroidal saponins were discovered in AAS by UPLC-Q-TOF/MS analysis. Pharmacological and behavioral analysis demonstrated that AAS could significantly lower the Racine classification and reduce the frequency of generalized spike rhythm the rate of tetanic seizures in kainic acid-induced epileptic rats. Hematoxylin and eosin and Nissl staining-indicated AAS could significantly improve hippocampal injury and neuron loss in epileptic rats. TMT proteomic analysis discovered 26 different expressed proteins (DEPs), which were identified as the rescue proteins. After bioinformatic analysis, Heat Shock Protein 90 Alpha Family Class B Member 1 (Hsp90ab1) and Tyrosine 3-Monooxygenase (Ywhab) were screened as key DEPs and verified by western blotting. AAS could significantly inhibited the up-regulation of Hsp90ab1 and Ywhab in EP rats; these two proteins might be the key targets of AAS in treating EP.

11.
Molecules ; 29(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39202856

ABSTRACT

The Papaveraceae plant family serves as a botanical reservoir for a variety of medicinal compounds that have been traditionally utilized in Chinese medicine for numerous generations. Growing attention towards the pharmaceutical potential of Papaveraceae has resulted in the identification of many alkaloids, which have attracted significant attention from the scientific community because of their structural complexity and wide range of biological activities, such as analgesic, antihypertensive, antiarrhythmic, anti-inflammatory, antibacterial, anti-tumor, anti-cancer, and other activities, making them potential candidates for medical use. The primary objective of this review is to analyze the existing literature on the historical use of Papaveraceae plants, focusing on their alkaloid structures and relationship with pharmacological effects, as well as provide a theoretical basis for their clinical application, with the goal of unveiling the future potential of Papaveraceae plants.


Subject(s)
Alkaloids , Papaveraceae , Alkaloids/chemistry , Alkaloids/pharmacology , Humans , Papaveraceae/chemistry , China , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Animals , Medicine, Chinese Traditional , Molecular Structure , Structure-Activity Relationship
12.
Int J Biol Macromol ; 279(Pt 1): 134952, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197630

ABSTRACT

The purified neutral polysaccharide fraction, namely SBP-1, was isolated and characterized from Schisandra chinensis (Turcz.) Baill crude polysaccharides, which have anti-Parkinson's disease activity were investigated in vivo and in vitro. Experiments have shown that the main chain of SBP-1 was Glcp-(1→, →4)-Glcp-(1→ and →4,6)-Glcp-(1→. We also revealed the effect of SBP-1 on the PD mice model and the potential underlying molecular mechanism. The results showed that SBP-1 administration improved behavioral deficits, increased tyrosine hydroxylase-positive cells, attenuated loss of dopaminergic neurons in MPTP-exposed mice, and reduced cell death induced by MPP+. The MCL-1 was identified as the target of SBP-1 by the combination of docking-SPR-ITC, WB, and IF experiments. Subsequently, the study showed that SBP-1 could target MCL-1 to enhance autophagy with a change in the apoptotic response, which was further demonstrated by a change in LC3/P62, PI3K/AKT/mTOR, and possesses a change in the expression of BCL2/BAX/Caspase3. These results demonstrate that SBP-1 may protect neurons against MPP+ or MPTP-induced damage in vitro and in vivo through enhancing autophagy. In summary, these findings indicate that SBP-1 and S. chinensis show potential as effective candidates for further investigation in the prevention and treatment of PD or associated illnesses, specifically through autophagy apoptotic-based mechanisms.

13.
Molecules ; 29(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38999057

ABSTRACT

Porphyra haitanensis (P. haitanensis), an important food source for coastal residents in China, has a long history of medicinal and edible value. P. haitanensis polysaccharides are some of the main active ingredients in P. haitanensis. It is worth noting that P. haitanensis polysaccharides have a surprising and satisfactory biological activity, which explains the various benefits of P. haitanensis to human health, such as anti-oxidation, immune regulation, anti-allergy, and anticancer properties. Hence, a systematic review aimed at comprehensively summarizing the recent research advances in P. haitanensis polysaccharides is necessary for promoting their better understanding. In this review, we systematically and comprehensively summarize the research progress on the extraction, purification, structural characterization, modification, and biological activity of P. haitanensis polysaccharides and address the shortcomings of the published research and suggest area of focus for future research, providing a new reference for the exploitation of polysaccharides from P. haitanensis in the fields of medicine and functional foods.


Subject(s)
Polysaccharides , Porphyra , Porphyra/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification
14.
Nat Prod Res ; : 1-11, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39015011

ABSTRACT

Three new compounds 1-glyceryl 9(ß), 10(α), 11(ß)-trihydroxy-12(Z)-octadecenoate, 2'S-20-O-p-hydroxyphenylpropionyloxy-20-hyd-roxyarachidic acid glycerol ester (2), 3-O-α-l-arabinopyranosyl-(1→6)-ß-d-glucopyranoside of ethyl (3S)-hydroxybutanoate (3), as well as a new natural product (4) were isolated from the fruits of Solanum virginianum L. The structures of 26 compounds were determined by comprehensive spectroscopic analyses, NMR calculation, chemical methods, and comparisons of spectroscopic data. Compounds 2 and 16 exhibited good anti-inflammatory activity in the LPS-induced RAW 264.7 inflammatory model with IC50 values of 16.75 ± 1.54 and 22.43 ± 2.01 µM, respectively.

15.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998935

ABSTRACT

This article systematically reviews the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of C. speciosa polysaccharides, and their potential application in food, medicine, functional products, and feed, in order to provide a useful reference for future research. Chaenomeles speciosa (Sweet) Nakai. has attracted the attention of health consumers and medical researchers as a traditional Chinese medicine with edible, medicinal, and nutritional benefits. According to this study, C. speciosa polysaccharides have significant health benefits, such as anti-diaetic, anti-inflammatory and analgesic, anti-tumor, and immunomodulatory effects. Researchers determined the molecular weight, structural characteristics, and monosaccharide composition and ratio of C. speciosa polysaccharides by water extraction and alcohol precipitation. This study will lay a solid foundation for further optimization of the extraction process of C. speciosa polysaccharides and the development of their products. As an active ingredient with high value, C. speciosa polysaccharides are worthy of further study and full development. C. speciosa polysaccharides should be further explored in the future, to innovate their extraction methods, enrich their types and biological activities, and lay a solid foundation for further research and development of products containing polysaccharides that are beneficial to the human body.


Subject(s)
Polysaccharides , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Rosaceae/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Medicine, Chinese Traditional , Monosaccharides/chemistry , Monosaccharides/analysis , Structure-Activity Relationship , Animals
16.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999021

ABSTRACT

Cancer represents one of the most significant health challenges currently facing humanity, and plant-derived antitumour drugs represent a prominent class of anticancer medications in clinical practice. Isovaleryl sucrose esters, which are natural constituents, have been identified as having potential antitumour effects. However, the mechanism of action remains unclear. In this study, 12 isovaleryl sucrose ester components, including five new (1-5) and seven known compounds (6-12), were isolated from the roots of Atractylodes japonica. The structures of the compounds were elucidated using 1D and 2D-NMR spectroscopy, complemented by HR-ESI-MS mass spectrometry. The cytotoxic activities of all the compounds against human colon cancer cells (HCT-116) and human lung adenocarcinoma cells (A549) were also evaluated using the CCK8 assay. The results demonstrated that compounds 2, 4, and 6 were moderately inhibitory to HCT-116 cells, with IC50 values of 7.49 ± 0.48, 9.03 ± 0.21, and 13.49 ± 1.45 µM, respectively. Compounds 1 and 6 were moderately inhibitory to A549, with IC50 values of 8.36 ± 0.77 and 7.10 ± 0.52 µM, respectively. Molecular docking revealed that compounds 1-9 exhibited a stronger affinity for FGFR3 and BRAF, with binding energies below -7 kcal/mol. Compound 2 exhibited the lowest binding energy of -10.63 kcal/mol to FGFR3. We screened the compounds with lower binding energies, and the protein-ligand complexes already obtained after molecular docking were subjected to exhaustive molecular dynamics simulation experiments, which simulated the dynamic behaviour of the molecules in close proximity to the actual biological environment, thus providing a deeper understanding of their functions and interaction mechanisms. The present study provides a reference for the development and use of iso-valeryl sucrose esters in the antitumour field.


Subject(s)
Atractylodes , Esters , Molecular Docking Simulation , Sucrose , Humans , Sucrose/chemistry , Sucrose/analogs & derivatives , Sucrose/pharmacology , Esters/chemistry , Esters/pharmacology , Atractylodes/chemistry , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , HCT116 Cells , Cell Line, Tumor , Plant Extracts/chemistry , Plant Extracts/pharmacology , A549 Cells , Molecular Dynamics Simulation , Cell Proliferation/drug effects
17.
Phytomedicine ; 132: 155792, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059090

ABSTRACT

BACKGROUND: Numerous studies indicate that natural polysaccharides have immune-enhancing effects as a host defense potentiator. Few reports are available on hormetic effects of natural polysaccharides, and the underlying mechanisms remain unclear. PURPOSE: AELP-B6 (arabinose- and galactose-rich pectin polysaccharide) from Aralia elata (Miq.) Seem was taken as a case study to clarify the potential mechanism of hormetic effects of natural polysaccharides. METHODS: The pharmacodynamic effect of AELP-B6 was verified by constructing the CTX-immunosuppressive mouse model. The hormetic effects were explored by TMT-labeled proteomics, energy metabolism analysis, flow cytometry and western blot. The core-affinity target of AELP-B6 was determined by pull down, nanoLC-nanoESI+-MS, CETSA, immunoblot and SPR assay. The RAW264.7Clec4G-RFP and RAW264.7Rab1A-RFP cell lines were simultaneously constructed to determine the affinity difference between AELP-B6 and targets by confocal laser scanning live-cell imaging. Antibody blocking assays were further used to verify the mechanism of hormetic effects. RESULTS: AELP-B6 at low and medium doses may maintain the structural integrity of thymus and spleen, increase the concentrations of TNF-α, IFN-γ, IL-3 and IL-8, and alleviate CTX-induced reduction of immune cell viability in vivo. Proteomics and energy metabolism analysis revealed that AELP-B6 regulate HIF-1α-mediated metabolic programming, causing Warburg effects in macrophages. AELP-B6 at low and medium doses promoted the release of intracellular immune factors, and driving M1-like polarization of macrophages. As a contrast, AELP-B6 at high dose enhanced the expression levels of apoptosis related proteins, indicating activation of the intrinsic apoptotic cascade. Two highly expressed transmembrane proteins in macrophages, Clec4G and Rab1A, were identified as the primary binding targets of AELP-B6 which co-localized with the cell membrane and directly impacted with immune cell activation and apoptosis. AELP-B6 exhibits affinity differences with Clec4G and Rab1A, which is the key to the hormetic effects. CONCLUSION: We observed hormesis of natural polysaccharide (AELP-B6) for the first time, and AELP-B6 mediates the hormetic effects through two dose-related targets. Low dose of AELP-B6 targets Clec4G, thereby driving the M1-like polarization via regulating NF-κB signaling pathway and HIF-1α-mediated metabolic programming, whereas high dose of AELP-B6 targets Rab1A, leading to mitochondria-dependent apoptosis.


Subject(s)
Pectins , Animals , Mice , Pectins/pharmacology , Lectins, C-Type/metabolism , RAW 264.7 Cells , Energy Metabolism/drug effects , Polysaccharides/pharmacology
18.
Glycoconj J ; 41(3): 201-216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38954268

ABSTRACT

A glucosyl-rich pectin, JMMP-3 (Mw, 2.572 × 104 g/mol, O-methyl % = 3.62%), was isolated and purified from the pericarp of the immature fruit of Juglans mandshurica Maxim. (QingLongYi). The structure of JMMP-3 was studied systematically by infrared spectroscopy, monosaccharide compositions, methylation analysis, partial acid hydrolysis, and 1/2D-NMR. The backbone of JMMP-3 possessed a smooth region (→ 4GalA1 →) and a hairy region (→ 4GalA1 → 2Rha1 →) with a molar ratio of 2: 5. The substitution of four characteristic side chains (R1-R4) occurs at C-4 of → 2,4)-α-Rhap-(1→, where R1 is composed of → 5)-α-Araf-(1→, R2 is composed of → 4)-ß-Galp-(1 → and ß-Galp-(1→, R3 is composed of α-Glcp-(1→, →4)-α-Glcp-(1 → and → 4,6)-α-Glcp-(1→, and R4 is composed of → 5)-α-Araf-(1→, ß-Galp-(1→, → 4)-ß-Galp-(1→, → 3,4)-ß-Galp-(1→, → 4,6)-ß-Galp-(1 → and → 2,4)-ß-Galp-(1 → . In addition, the antitumor activity of JMMP-3 on HepG2 cells was preliminarily investigated.


Subject(s)
Fruit , Juglans , Pectins , Juglans/chemistry , Pectins/chemistry , Pectins/isolation & purification , Humans , Fruit/chemistry , Hep G2 Cells , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification
19.
J Agric Food Chem ; 72(30): 17062-17071, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39036888

ABSTRACT

Glycoside linkage analyses of medicine and food homologous plant polysaccharides have always been a key point and a difficulty of structural characterization. The gas chromatography-mass spectrometry (GC-MS) method is one of the commonly used traditional techniques to determine glycoside linkages via partially methylated alditol acetates and aldononitrile acetates (PMAAs and PMANs). Due to the simplicity of derivatization and the highly structural asymmetry of PMANs, reverse thinking is proposed using liquid chromatography-electrospray ionization-multiple reaction monitoring mass spectrometry (LC-ESI-MRM-MS) for the first time to directly determine the neutral and acidic glycosyl linkages of polysaccharides. The complete characterization of glycoside linkages deduced from PMANs was achieved using a combination of tR values, characteristic MRM ion pairs, diagnostic ESI+-MS/MS fragmentation ions (DFIs), and optimal collision energy (OCE). The DFI and OCE parameters were confirmed to be effective for the auxiliary discrimination of some isomers of the PMANs. The practicality of LC-ESI+-MRM-MS was further verified by analyzing the glycoside linkages of polysaccharides in five medicine and food homologous plants. This method can serve as an alternative to GC-MS for the simultaneous determination of neutral and acidic glycosyl linkages in polysaccharides.


Subject(s)
Glycosides , Polysaccharides , Spectrometry, Mass, Electrospray Ionization , Polysaccharides/chemistry , Glycosides/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Acetates/chemistry , Nitriles/chemistry , Methylation , Chromatography, Liquid/methods , Plant Extracts/chemistry , Gas Chromatography-Mass Spectrometry/methods
20.
Antioxidants (Basel) ; 13(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38929125

ABSTRACT

The human body comprises numerous organs and tissues operating in synchrony, it facilitates metabolism, circulation, and overall organismal function. Consequently, the well-being of our organs and tissues significantly influences our overall health. In recent years, research on the protective effects of artesunate (AS) on various organ functions, including the heart, liver, brain, lungs, kidneys, gastrointestinal tract, bones, and others has witnessed significant advancements. Findings from in vivo and in vitro studies suggest that AS may emerge as a newfound guardian against organ damage. Its protective mechanisms primarily entail the inhibition of inflammatory factors and affect anti-fibrotic, anti-aging, immune-enhancing, modulation of stem cells, apoptosis, metabolic homeostasis, and autophagy properties. Moreover, AS is attracting a high level of interest because of its obvious antioxidant activities, including the activation of Nrf2 and HO-1 signaling pathways, inhibiting the release of reactive oxygen species, and interfering with the expression of genes and proteins associated with oxidative stress. This review comprehensively outlines the recent strides made by AS in alleviating organismal injuries stemming from various causes and protecting organs, aiming to serve as a reference for further in-depth research and utilization of AS.

SELECTION OF CITATIONS
SEARCH DETAIL