Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 11(10)2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30257417

ABSTRACT

A Coupled thermo-mechanical finite element model was employed to simulate the possible effects of varying laser scanning parameters on the surface hardening process for AISI 1045 and AISI 4140 steels. We took advantage of the high-power density of laser beams to heat the surface of workpieces quickly to achieve self-quenching effects. The finite element model, along with the temperature-dependent material properties, was applied to characterize the possible quenching and tempering effects during single-track laser surface heat treatment. We verified the accuracy of the proposed model through experiments. The effects of laser surface hardening parameters, such as power variation, scanning speed, and laser spot size, on the surface temperature distribution, hardening width, and hardening depth variations during the single-track surface laser treatment process, were investigated using the proposed model. The analysis results show that laser power and scanning speed are the key parameters that affect the hardening of the material. The numerical results reveal that the proposed finite element model is able to simulate the laser surface heat treatment process and tempering effect of steel.

2.
Appl Opt ; 51(19): 4448-56, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22772118

ABSTRACT

The excess loss and output optical power ratio of symmetrical and asymmetrical Y-branch couplers for plastic optical fibers (POFs) are studied in this work. A ray-tracing model for the Y-branch coupler is derived to investigate the effect of coupling parameters on its optical performance. The coupling parameters, namely coupling angle, axial displacement, and refractive index of filling medium between the emitting-end and receiving-end POFs, are studied. The simulated and measured results indicate that the coupling efficiency is sensitive to all these coupling parameters. A minimum excess loss of approximately 0.83 dB is observed for the symmetrical Y-branch coupler. It is found that both the excess loss and the output power ratio are increased with the increase of the refractive index of the filling medium and the total coupling angle (α+ß) for the asymmetrical Y-branch coupler. The experimental results indicate that the maximum output power ratio P1∶P2 is found to be 3.8∶1 for excess loss of less than 2.8 dB for the asymmetrical Y-branch coupler.

3.
Sensors (Basel) ; 10(11): 10198-210, 2010.
Article in English | MEDLINE | ID: mdl-22163465

ABSTRACT

In this study, a high sensitivity and easy fabricated plastic optical fiber (POF) displacement sensor is proposed. A POF specimen subjected to dual cyclic bending is used to improve the sensitivity of the POF displacement sensor. The effects of interval between rollers, relative displacement and number of rollers on the sensitivity of the displacement sensor are analyzed both experimentally and numerically. A good agreement between the experimental measurements and numerical calculations is obtained. The results show that the interval between rollers affects sensitivity most significantly than the other design parameters. Based on the experimental data, a linear equation is derived to estimate the relationship between the power loss and the relative displacement. The difference between the estimated results and the experimental results is found to be less than 8%. The results also show that the proposed POF displacement sensor based on dual cyclic bending can be used to detect displacement accurately.


Subject(s)
Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Optical Fibers , Plastics , Equipment Design
4.
Appl Opt ; 45(26): 6668-74, 2006 Sep 10.
Article in English | MEDLINE | ID: mdl-16926895

ABSTRACT

We investigate the effect of fiber elongation on power loss as rays propagate along deformed polymer optical fibers (POFs). Variations in core diameter, incident angle, stress and strain distributions, and necking of the POFs during fiber elongation are studied. The power losses in the deformed POFs are analyzed both experimentally and numerically. Theoretical analysis based on an elastic-plastic finite-element model and a planar waveguide assumption is proposed. It is found that fiber elongation significantly affects the power loss in POFs, particularly at higher values of elongation. Good agreement between the measured results and the results simulated from the proposed model is obtained. The maximum difference is less than 5%. Results indicate that the proposed theoretical analysis based on an elastic-plastic finite-element model and a planar waveguide assumption is feasible to predict the power loss variation introduced by elongated deformations. A curve-fitted equation is also proposed to estimate the power loss of POFs under different fiber elongation conditions.

5.
Opt Lett ; 31(7): 879-81, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16599198

ABSTRACT

We explore the dependence of power losses on average plastic energy densities as rays propagate along deformed polymer optical fibers (POFs). The variation of power losses in deformed POFs with different bend radii and elongations are measured and analyzed. Three-dimensional elastic-plastic finite-element models are used to calculate average plastic energy densities in deformed POFs. The results indicate that the average plastic energy density introduced in a deformed POF can be considered a key index with which to study the power loss. Based on the experimental results, a curve-fitted equation is proposed for estimating the power loss by using the average plastic energy density for various bend radii.

SELECTION OF CITATIONS
SEARCH DETAIL
...