Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 472: 76-83, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27016631

ABSTRACT

A dual-channel optical sensing platform which combines the advantages of dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) and fluorescence has been designed for the detection of diminazene aceturate (DA). It is based on the use of thioglycolic acid-wrapped CdTe/CdS quantum dots (Q-dots). In the absence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots exhibit the high fluorescence spectrum and low RRS spectrum, so are selected to develop an easy-to-get system. In the presence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots and DA form a complex through electrostatic interaction, which result in the RRS intensity getting enhanced significantly with new RRS peaks appearing at 317 and 397 nm; the fluorescence is powerfully quenched. Under optimum conditions, the scattering intensities of the two peaks are proportional to the concentration of DA in the range of 0.0061-3.0 µg mL(-1). The detection limits for the two single peaks are 4.1 ng mL(-1) and 3.3 ng mL(-1), while that of the DWO-RRS method is 1.8 ng mL(-1), indicating that the DWO-RRS method has high sensitivity. Besides, the fluorescence also exhibits good linear range from 0.0354 to 10.0 µg mL(-1) with a detection limit of 10.6 ng mL(-1). In addition, the system has been applied to the detection of DA in milk samples with satisfactory results.


Subject(s)
Antiprotozoal Agents/analysis , Cadmium Compounds/chemistry , Diminazene/analogs & derivatives , Milk/chemistry , Quantum Dots/chemistry , Sulfides/chemistry , Tellurium/chemistry , Thioglycolates/chemistry , Animals , Diminazene/analysis , Food Contamination/analysis , Limit of Detection , Quantum Dots/ultrastructure , Spectrometry, Fluorescence/methods , Spectrophotometry, Ultraviolet
2.
J Colloid Interface Sci ; 457: 162-8, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26164248

ABSTRACT

Even though various strategies have reported for DNA detection, development of a simple, time-saving and specific fluorescent sensing platform still remains a desired goal. In this work, a quantum dots (QDs) based fluorescent reversible "off-on" mode was developed for sensitively recognition of herring sperm DNA (hsDNA). Firstly, in the "turn off" stage, the fluorescence of glutathione (GSH) capped CdTe QDs could be effectively quenched by ytterbium ion (Yb(3+)) was due to the occurrence of the electron transfer between Yb(3+) and the photoexcited QDs. And then, in the following "turn on" stage, with the effective binding reaction of Yb(3+) to hsDNA, the fluorescence intensity of GSH-capped CdTe QDs enhanced. Under the optimal conditions, the linear range of fluorescence versus the concentration of hsDNA was 0.010-12 µg/mL, and the detection limit was 3.033 ng/mL. In addition, the reaction mechanism among GSH-capped CdTe QDs, Yb(3+) and hsDNA were investigated by fluorescence spectroscopy, UV-vis spectrophotometry, fluorescence lifetime measurement and viscosity measurements. This analytical fluorescent reversible "off-on" pattern offered a way with good sensitivity and selectivity for the detection of hsDNA.


Subject(s)
Cadmium Compounds/chemistry , DNA/analysis , DNA/chemistry , Fluorescence , Quantum Dots , Tellurium/chemistry , Ytterbium/analysis , Ytterbium/chemistry , Humans , Male , Molecular Conformation , Particle Size , Spermatozoa/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...