Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 266(Pt 1): 130939, 2024 May.
Article in English | MEDLINE | ID: mdl-38493816

ABSTRACT

African swine fever (ASF) is an acute, febrile, highly contagious infection of pigs caused by the African swine fever virus (ASFV). The purpose of this study is to understand the molecular mechanism of ASFV infection and evaluate the effect of DCA on MAPK pathway, so as to provide scientific basis for the development of new antiviral drugs. The transcriptome analysis found that ASFV infection up-regulated the IL-17 and MAPK signaling pathways to facilitate viral replication. Metabolome analysis showed that DCA levels were up-regulated after ASFV infection, and that exogenous DCA could inhibit activation of the MAPK pathway by ASFV infection and thus inhibit viral replication. Dual-luciferase reporter assays were used to screen the genes of ASFV and revealed that I73R could significantly up-regulate the transcription level of AP-1 transcription factor in the MAPK pathway. Confocal microscopy demonstrated that I73R could promote AP-1 entry into the nucleus, and that DCA could inhibit the I73R-mediated nuclear entry of AP-1, inhibiting MAPK pathway, and I73R interacts with AP-1. These results indicated that DCA can inhibit ASFV-mediated activation of the MAPK pathway, thus inhibiting ASFV replication. This study provides a theoretical basis for research on ASF pathogenesis and for antiviral drug development.


Subject(s)
African Swine Fever Virus , Deoxycholic Acid , MAP Kinase Signaling System , Virus Replication , Virus Replication/drug effects , Animals , African Swine Fever Virus/drug effects , MAP Kinase Signaling System/drug effects , Swine , Deoxycholic Acid/pharmacology , Transcription Factor AP-1/metabolism , Chlorocebus aethiops , Vero Cells , African Swine Fever/virology , African Swine Fever/metabolism , Antiviral Agents/pharmacology
2.
Virus Evol ; 9(2): vead060, 2023.
Article in English | MEDLINE | ID: mdl-37868933

ABSTRACT

Since 2018, the outbreaks of genotype II African swine fever virus (ASFV) in China and several eastern Asian countries have caused a huge impact on the local swine industry, resulting in huge economic losses. However, little is known about the origin, genomic diversity, evolutionary features, and epidemiological history of the genotype II ASFV. Here, 14 high-quality complete genomes of ASFVs were generated via sequencing of samples collected from China over the course of 3 years, followed by phylogenetic and phylodynamic analyses. The strains identified were relatively homogeneous, with a total of 52 SNPs and 11 indels compared with the prototype strain HLJ/2018, among which there were four exceptionally large deletions (620-18,023 nt). Evolutionary analyses revealed that ASFV strains distributed in eastern Asia formed a monophyly and a 'star-like' structure centered around the prototype strain, suggesting a single origin. Additionally, phylogenetic network analysis and ancestral reconstruction of geographic state indicated that genotype II ASFV strains in eastern Asia likely originated from Western Europe. Overall, these results contribute to the understanding of the history and current status of genotype II ASFV strains in eastern Asian, which could be of considerable importance in disease control and prevention.

3.
Front Vet Sci ; 9: 978243, 2022.
Article in English | MEDLINE | ID: mdl-36061106

ABSTRACT

African swine fever (ASF) outbreak have caused tremendous economic loss to the pig industry in China since its emergence in August 2018. Previous studies revealed that many published sequences are not suitable for detailed analyses due to the lack of data regarding quality parameters and methodology, and outdated annotations. Thus, high-quality genomes of highly pathogenic strains that can be used as references for early Chinese ASF outbreaks are still lacking, and little is known about the features of intra-host variants of ASF virus (ASFV). In this study, a full genome sequencing of clinical samples from the first ASF outbreak in Guangdong in 2018 was performed using MGI (MGI Tech Co., Ltd., Shenzhen, China) and Nanopore sequencing platforms, followed by Sanger sequencing to verify the variations. With 22 sequencing corrections, we obtained a high-quality genome of one of the earliest virulent isolates, GZ201801_2. After proofreading, we improved (add or modify) the annotations of this isolate using the whole genome alignment with Georgia 2007/1. Based on the complete genome sequence, we constructed the methylation profiles of early ASFV strains in China and predicted the potential 5mC and 6mA methylation sites, which are likely involved in metabolism, transcription, and replication. Additionally, the intra-host single nucleotide variant distribution and mutant allele frequency in the clinical samples of early strain were determined for the first time and found a strong preference for A and T substitution mutation, non-synonymous mutations, and mutations that resulted in amino acid substitutions into Lysine. In conclusion, this study provides a high-quality genome sequence, updated genome annotation, methylation profile, and mutation spectrum of early ASFV strains in China, thereby providing a reference basis for further studies on the evolution, transmission, and virulence of ASFV.

4.
Vet Microbiol ; 273: 109527, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35961273

ABSTRACT

African swine fever (ASF) is a devastating infectious disease that causes significant economic losses to the pig industry worldwide. Luteolin is abundant in onion leaves, carrots, broccoli, and apple skin and exerts various biological activities, including anti-cancer and anti-virus effects. Our aim was to demonstrate the mechanism of action and potent antiviral activity of luteolin against ASF virus (ASFV) in porcine alveolar macrophages. We performed cell viability, hemadsorption, indirect immunofluorescence, western blotting, and quantitative real-time polymerase chain reaction assays to investigate the effect of luteolin on ASFV. Notably, luteolin restricted ASFV replication in a dose-dependent manner. The anti-ASFV activity of luteolin was maintained for 24-72 h. Subsequent experiments revealed that luteolin could block multiple stages of the ASFV replication cycle, including those at 6-9 h and 12-15 h after infection, instead of directly interacting with ASFV. Moreover, ASFV infection stimulated the expression of phosphorylated nuclear factor (NF)-κB, interleukin (IL)- 6, and phosphorylated signal transducer and activator of transcription 3 (STAT3). However, luteolin downregulated ASFV-induced NF-κB, IL-6, and STAT3 expression. Importantly, NF-κB agonist CU-T12-9 weakened the inhibitory effects of luteolin on NF-κB and STAT3. Moreover, CU-T12-9 partially restored the inhibitory effect of luteolin on ASFV. Similarly, luteolin reduced ASFV-induced activating transcription factor 6 (ATF6) expression, and CU-T12-9 weakened the inhibitory effect of luteolin on ATF6. Our findings suggested that luteolin inhibited ASFV replication by regulating the NF-κB/STAT3/ATF6 signaling pathway and might provide a rationale for anti-ASFV drug development.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , Animals , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/pharmacology , African Swine Fever Virus/physiology , Interleukin-6/metabolism , Luteolin/pharmacology , NF-kappa B/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Swine , Virus Replication
5.
Microbiol Spectr ; 10(5): e0215522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36000903

ABSTRACT

We reported a novel African swine fever virus (ASFV) strain that had a three-large-fragment deletion and unique variations in genome. This isolate displayed a nonhemadsorbing phenotype and had homogeneous proliferation compared with the wild-type ASFV strain. Our findings highlighted the urgent need for further investigation of ASFV variations in China. IMPORTANCE African swine fever virus (ASFV) has been circulating in China for 5 years, and low virulent strains with changes in the genome have been reported. Nevertheless, there is still a lack of knowledge about the epidemic strains at the whole-genome level. This study reported a novel strain and further analyzed its genomic and biological characteristics. In addition, our study also suggests that whole-genome sequencing plays a key role in the epidemiology investigation of ASFV variations.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever/epidemiology , Viral Proteins/genetics , Virulence , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...