Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 41: 103548, 2024.
Article in English | MEDLINE | ID: mdl-38061176

ABSTRACT

BACKGROUND: Early detection of Parkinson's disease (PD) patients at high risk for mild cognitive impairment (MCI) can help with timely intervention. White matter structural connectivity is considered an early and sensitive indicator of neurodegenerative disease. OBJECTIVES: To investigate whether baseline white matter structural connectivity features from diffusion tensor imaging (DTI) of de novo PD patients can help predict PD-MCI conversion at an individual level using machine learning methods. METHODS: We included 90 de novo PD patients who underwent DTI and 3D T1-weighted imaging. Elastic net-based feature consensus ranking (ENFCR) was used with 1000 random training sets to select clinical and structural connectivity features. Linear discrimination analysis (LDA), support vector machine (SVM), K-nearest neighbor (KNN) and naïve Bayes (NB) classifiers were trained based on features selected more than 500 times. The area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN) and specificity (SPE) were used to evaluate model performance. RESULTS: A total of 57 PD patients were classified as PD-MCI nonconverters, and 33 PD patients were classified as PD-MCI converters. The models trained with clinical data showed moderate performance (AUC range: 0.62-0.68; ACC range: 0.63-0.77; SEN range: 0.45-0.66; SPE range: 0.64-0.84). Models trained with structural connectivity (AUC range, 0.81-0.84; ACC range, 0.75-0.86; SEN range, 0.77-0.91; SPE range, 0.71-0.88) performed similar to models that were trained with both clinical and structural connectivity data (AUC range, 0.81-0.85; ACC range, 0.74-0.85; SEN range, 0.79-0.91; SPE range, 0.70-0.89). CONCLUSIONS: Baseline white matter structural connectivity from DTI is helpful in predicting future MCI conversion in de novo PD patients.


Subject(s)
Cognitive Dysfunction , Neurodegenerative Diseases , Parkinson Disease , Humans , Diffusion Tensor Imaging/methods , Parkinson Disease/diagnostic imaging , Bayes Theorem , Cognitive Dysfunction/diagnostic imaging
2.
Parkinsonism Relat Disord ; 112: 105446, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37245278

ABSTRACT

INTRODUCTION: Hierarchy has been identified as a principle underlying the organization of human brain networks. In Parkinson's disease with freezing of gait (PD-FOG), it remains unclear whether and how the network hierarchy is disrupted. Additionally, the associations between changes in the brain network hierarchy of PD patients with FOG and clinical scales remain unclear. The aim of this study was to explore alterations in the network hierarchy of PD-FOG and their clinical relevance. METHODS: In this study, the brain network hierarchy of each group was described through a connectome gradient analysis among 31 PD-FOG, 50 PD patients without FOG (PD-NFOG), and 38 healthy controls (HC). Changes in the network hierarchy were assessed by comparing different gradient values of each network between the PD-FOG, PD-NFOG and HC groups. We further examined the relationship between dynamically changing network gradient values and clinical scales. RESULTS: For the second gradient, Salience/ventral attention network-A (SalVentAttnA) network gradient of PD-FOG group was significantly lower than that of PD-NFOG, while both PD subgroups had a Default mode network-C gradient that was significantly lower than that of the HC group. In the third gradient, somatomotor network-A gradient of PD-FOG patients was significantly lower than the PD-NFOG group. Moreover, reduced SalVentAttnA network gradient values were associated with more severe gaits, fall risk, and frozen gait in PD-FOG patients. CONCLUSIONS: The brain network hierarchy in PD-FOG is disturbed, this dysfunction is related to the severity of frozen gait. This study provides novel evidence for the neural mechanisms of FOG.


Subject(s)
Connectome , Gait Disorders, Neurologic , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Brain/diagnostic imaging , Gait
SELECTION OF CITATIONS
SEARCH DETAIL
...