Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 6: 36595, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27812030

ABSTRACT

Adenosine receptors (ARs) are potential therapeutic targets for Parkinson's disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models' robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction.


Subject(s)
Receptors, Purinergic P1/metabolism , Humans , Ligands , Models, Molecular , Protein Binding , Support Vector Machine
3.
Molecules ; 21(11)2016 Nov 17.
Article in English | MEDLINE | ID: mdl-27869685

ABSTRACT

The crystallized ligands in the Protein Data Bank (PDB) can be treated as the inverse shapes of the active sites of corresponding proteins. Therefore, the shape similarity between a molecule and PDB ligands indicated the possibility of the molecule to bind with the targets. In this paper, we proposed a shape similarity profile that can be used as a molecular descriptor for ligand-based virtual screening. First, through three-dimensional (3D) structural clustering, 300 diverse ligands were extracted from the druggable protein-ligand database, sc-PDB. Then, each of the molecules under scrutiny was flexibly superimposed onto the 300 ligands. Superimpositions were scored by shape overlap and property similarity, producing a 300 dimensional similarity array termed the "Three-Dimensional Biologically Relevant Spectrum (BRS-3D)". Finally, quantitative or discriminant models were developed with the 300 dimensional descriptor using machine learning methods (support vector machine). The effectiveness of this approach was evaluated using 42 benchmark data sets from the G protein-coupled receptor (GPCR) ligand library and the GPCR decoy database (GLL/GDD). We compared the performance of BRS-3D with other 2D and 3D state-of-the-art molecular descriptors. The results showed that models built with BRS-3D performed best for most GLL/GDD data sets. We also applied BRS-3D in histone deacetylase 1 inhibitors screening and GPCR subtype selectivity prediction. The advantages and disadvantages of this approach are discussed.


Subject(s)
Databases, Protein , Computer Simulation , Drug Discovery , Humans , Ligands , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Receptors, G-Protein-Coupled/chemistry , Structural Homology, Protein , Support Vector Machine
4.
Chem Biol Drug Des ; 88(6): 859-872, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27390270

ABSTRACT

We applied a novel molecular descriptor, three-dimensional biologically relevant spectrum (BRS-3D), in subtype selectivity prediction of dopamine receptor (DR) ligands. BRS-3D is a shape similarity profile calculated by superimposing the objective compounds against 300 template ligands from sc-PDB. First, we constructed five subtype selectivity regression models between DR subtypes D1-D2, D1-D3, D2-D3, D2-D4, and D3-D4. The models' 10-fold cross-validation-squared correlation coefficient (Q2 , for training sets) and determination coefficient (R2 , for test sets) were in the range of 0.5-0.7 and 0.6-0.8, respectively. Then, four pair-wise (D1-D2, D2-D3, D2-D4, and D3-D4) and a multitype (D2, D3, and D4) classification models were developed with the prediction accuracies around or over 90% (for test sets). Lastly, we compared the performances of the models developed on BRS-3D and classical descriptors. The results showed that BRS-3D performed similarly to classical 2D descriptors and better than other 3D descriptors. Combining BRS-3D and 2D descriptors can further improve the prediction performance. These results confirmed the capacity of BRS-3D in the prediction of DR subtype-selective ligands.


Subject(s)
Receptors, Dopamine/metabolism , Ligands , Models, Chemical , Quantitative Structure-Activity Relationship , Receptors, Dopamine/classification , Support Vector Machine
5.
J Chem Inf Model ; 53(11): 2820-8, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24125686

ABSTRACT

Both recent studies and our calculation suggest that the physicochemical properties of launched drugs changed continuously over the past decades. Besides shifting of commonly used properties, the average biological relevance (BR) and similarity to natural products (NPs) of launched drugs decreased, reflecting the fact that current drug discovery deviated away from NPs. To change the current situation characterized by high investment but low productivity in drug discovery, efforts should be made to improve the BR of the screening library and hunt drugs more effectively in the biologically relevant chemical space. Additionally, a multiple dimensional molecular descriptor, named the biologically relevant spectrum (BRS) was proposed for quantitative structure-activity relationships (QSAR) study or screening library preparation. Prediction models for 43 biological activity categories were developed with BRS and support vector machine (SVM). In most cases, the overall prediction accuracies were around 95% and the Matthew's correlation coefficients (MCC) were over 0.8. Thirty-seven out of 48 drug-activity associations were successfully predicted for drugs that launched from 2006 to 2012, which were not included in the training data set. A web-server named BioRel ( http://ibi.hzau.edu.cn/biorel ) was developed to provide services including BR, BRS calculation, activity class, and pharmacokinetic property prediction.


Subject(s)
Data Mining , Drug Design , Drug Discovery/statistics & numerical data , Software , Support Vector Machine , Biological Products , Clinical Trials as Topic , Databases, Factual , Databases, Pharmaceutical , Drug Discovery/trends , Humans , Models, Molecular , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...