Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 32(10): 789-800, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29520912

ABSTRACT

RATIONALE: Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved. METHODS: LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra. RESULTS: Many new Asm Pn± clusters (479 binary and 369 mono-elemental) not yet described in the literature were generated in the gas phase and their stoichiometry determined. The likely structures for some of the observed clusters arbitrary selected (20) were computed by density functional theory (DFT) optimization. CONCLUSIONS: LAS is an advantageous approach for the generation of new Asm Pn clusters, while mass spectrometry was found to be an efficient technique for the determination of cluster stoichiometry. The results achieved might inspire the synthesis of new materials.

2.
J Am Soc Mass Spectrom ; 28(2): 215-223, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27853975

ABSTRACT

Gold nanoparticles (NP) with average diameter ~100 nm synthesized from tetrachloroauric acid solution using stainless steel as a reducing agent were found to contain iron. Applying simultaneously high frequency (HF) plasma discharge in solution during the electrochemical reduction, giant gold-iron nanoflowers with average size ~1000-5000 nm were formed. Scanning electron microscopy (SEM) shows the morphology of the nanopowders produced as polygonal yet nearly spherical, whereas iron content in both products determined by energy dispersive X-ray analysis (EDX) was found to be at ~2.5 at. %. Laser desorption ionization (LDI) of both nanomaterials and mass spectrometric analysis show the formation of Au m Fe n+/- (m = 1-35; n = 1-3) clusters. Structure of few selected clusters in neutral or monocharged forms were computed by density functional theory (DFT) calculations and it was found that typical distances of an iron nucleus from adjacent gold nuclei lie in the interval 2.5 to 2.7 Å. Synthetized Au-Fe nanoparticles were found stable for at least 2 mo at room temperature (even in aqueous solution) without any stabilizing agent. Produced Au-Fe nanoparticles in combination with standard MALDI matrices enhance ionization of peptides and might find use in nanomedicine. Graphical Abstract ᅟ.

3.
Chemistry ; 22(32): 11261-8, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27387792

ABSTRACT

Methods for the rapid construction of new chemical motifs have the potential to accelerate the development of nanoscience. The synthesis of new chemical entities by laser ablation has been systematically demonstrated by using mixtures of gold and selenium. The compounds generated are detected by time-of-flight mass spectrometry and, for selected compounds, the structure is investigated by using density functional theory optimization. In total, 67 new gold selenide clusters have been synthesized, demonstrating an unsuspected richness in gold chemistry. Chemical species generated in the gas phase might inspire new routes for the synthesis of novel compounds in the solid state.

4.
Magn Reson Chem ; 43(4): 294-301, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15674813

ABSTRACT

The higher order high-resolution (31)P and (19)F NMR spectra of hexafluorocyclotriphosphazene (F(2)PN)(3) were measured at 183 K and interpreted using subspectral analysis and iterative fitting computation. (F(2)PN)(3) forms a rigid nine-spin system [A[X](2)](3) with D(3h) symmetry. Two complete and very similar sets of six experimental spin-spin coupling constants, (1)J(P,F), (2)J(P,P), (2)J(F,F), (3)J(P,F), (4)J(F,F)(cis) and (4)J(F,F)(trans), were determined for the first time. Theoretical DFT calculations of chemical shifts and coupling constants were performed to assess their predictive value. The PP/aug-cc-pVDZ treatment rendered the best agreement with experimental data.


Subject(s)
Heterocyclic Compounds, 1-Ring/chemistry , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Spectroscopy/standards , Fluorine/chemistry , Phosphorus/chemistry , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...