Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35062441

ABSTRACT

Tracking the trajectory of the load carried by the rotary crane is an important problem that allows reducing the possibility of its damage by hitting an obstacle in its working area. On the basis of the trajectory, it is also possible to determine an appropriate control system that would allow for the safe transport of the load. This work concerns research on the load motion carried by a rotary crane. For this purpose, the laboratory crane model was designed in Solidworks software, and numerical simulations were made using the Motion module. The developed laboratory model is a scaled equivalent of the real Liebherr LTM 1020 object. The crane control included two movements: changing the inclination angle of the crane's boom and rotation of the jib with the platform. On the basis of the developed model, a test stand was built, which allowed for the verification of numerical results. Event visualization and trajectory tracking were made using a dynamic vision sensor (DVS) and the Tracker program. Based on the obtained experimental results, the developed numerical model was verified. The proposed trajectory tracking method can be used to develop a control system to prevent collisions during the crane's duty cycle.


Subject(s)
Movement , Software , Motion
2.
Sensors (Basel) ; 18(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563278

ABSTRACT

The constant development of modern technologies allows the creation of new and, above all, mobile devices supporting people with disabilities. All work carried out to improve the lives of people with disabilities is an important element of the field of science. The work presents matters related to the anatomy and physiology of hearing, imaginative abilities of blind people and devices supporting these people. The authors elaborated a prototype of an electronic device that supports the orientation of blind people in the environment by means of sound signals. Sounds are denoted to present to a blind person a simplified map of the depth of space in front of the device user. An innovative element of the work is the use of Kinect sensor, scanning the space in front of the user, as well as a set of developed algorithms for learning and generating acoustic space, taking into account the inclination of the head. The experiments carried out indicate the correct interpretation of the modeled audible signals, and the tests carried out on persons with impaired vision organs demonstrate high efficiency of the developed concept.


Subject(s)
Acoustics/instrumentation , Environment , Orientation , Visually Impaired Persons , Biosensing Techniques , Equipment Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...