Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 204(1): 72, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34951686

ABSTRACT

Kappaphycus alvarezii seaweed extract (KSWE) is known to enhance crop productivity and impart stress tolerance. Close to one quarter of foliar spray applied to maize falls on the soil, either as drift or from leaf as drip. It was hypothesized that the drift spray would profoundly influence soil microbes under stress. An experiment was conducted with five treatments, with or without KSWE application at critical stages of maize grown under soil moisture stress and compared with an irrigated control. An Illumina platform was employed for the analysis of the V3-V4 region of 16S rRNA gene from the soil metagenome. A total of 345,552 operational taxonomic units were generated which were classified into 55 phyla, 152 classes, 240 orders, 305 families and 593 genera. Shannon's index and Shannon's equitability indicated increased soil bacterial diversity after multiple KSWE applications under conditions of abiotic duress. The abundance of the genera Alicyclobacillus, Anaerolinea, Bacillus, Balneimonas, Nitrospira, Rubrobacter and Steroidobacter decreased (49-79%) under drought imposed at the V5,10 and 15 stages of maize over the irrigated control, while it significantly improved when followed by KSWE application under drought. Flavobacterium, Nitrosomonas, Nitrosovibrio, Rubrobacter genera and several other bacterial taxa which are important for plant growth promotion and nutrient cycling were found to be enriched by KSWE application under drought conditions. Treatments having enriched microbial abundance due to KSWE application under stress recorded higher soil enzymatic activities and plant cob yield, suggesting the contribution of altered soil ecology mediated by KSWE as one of the reasons for improvement of yield.


Subject(s)
Fertilizers , Metagenomics , Seaweed , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Soil
2.
Front Plant Sci ; 8: 1541, 2017.
Article in English | MEDLINE | ID: mdl-28936217

ABSTRACT

Aim: Many countries import potassic fertilizers due to dearth of K-mineral deposits. Therefore processes to obtain K-nutrient sources from sea bittern were developed by our Institute. The present investigation evaluated the fertilizer potential of three different sea bittern-derived (SBD) potassium forms developed viz., potassium schoenite, potassium nitrate and potassium ammonium sulfate on maize productivity in two cropping seasons. Methods: The pot and field experiments consisted of four treatments, wherein the three K forms were applied at the recommended rate of 40 kg K2O ha-1 and were compared with commercially used sulfate of potash. The effect of these fertilizers on different parameters of plant and soil were evaluated. Results: The application of SBD-potassic fertilizers led to enhancement in growth, productivity and quality of maize which related well with higher photosynthesis, nutrient uptake and soil quality parameters. On an average all the three forms of sea bittern-derived potash enhanced yield of maize over control by 22.3 and 23.8%, respectively, in pot and field trials. The best performance was under SBD-KNO3, which also recorded the highest benefit: cost ratio of 1.76. Conclusion: The K-fertilizers derived from sea-bittern-a waste product of salt industry-can thus be economically used to improve crop production sustainably.

3.
Front Plant Sci ; 6: 1266, 2015.
Article in English | MEDLINE | ID: mdl-26834768

ABSTRACT

High volumes of lipid extracted microalgal biomass residues (LMBRs) are expected to be produced upon commencement of biodiesel production on a large scale, thus necessitating its value addition for sustainable development. LMBRs of Chlorella variabilis and Lyngbya majuscula were employed to substitute the nitrogen content of recommended rate of fertilizer (RRF) for Zea mays L. The pot experiment comprised of 10 treatments, i.e., T1 (No fertilizer); T2 (RRF-120 N: 60 P2O5: 40 K2O kg ha(-1)); T3 to T6-100, 75, 50, and 25% N through LMBR of the Chlorella sp., respectively; T7 to T10-100, 75, 50, and 25% N through LMBR of Lyngbya sp., respectively. It was found that all LMBR substitution treatments were at par to RRF with respect to grain yield production. T10 gave the highest grain yield (65.16 g plant(-1)), which was closely followed by that (63.48 g plant(-1)) under T5. T10 also recorded the highest phosphorus and potassium contents in grains. T4 was markedly superior over control in terms of dry matter accumulation (DMA) as well as carbohydrate content, which was ascribed to higher pigment content and photosynthetic activity in leaves. Even though considerably lower DMA was obtained in Lyngbya treatments, which might have been due to the presence of some toxic factors, no reduction in grain yield was apparent. The length of the tassel was significantly higher in either of the LMBRs at any substitution rates over RRF, except T6 and T7. The ascorbate peroxidase activity decreased with decreasing dose of Chlorella LMBR, while all the Lyngbya LMBR treatments recorded lower activity, which were at par with each other. Among the Chlorella treatments, only T5 recorded significantly higher values of glutathione reductase activity over RRF, while the rest were at par. There were significant increases in carbohydrate and crude fat, respectively, only in T4 and T3 over RRF, while no change was observed in crude protein due to LMBR treatments. Apparently, there was no detrimental effect on soil properties, suggesting that both the LMBRs can be employed to reduce the usage of chemical fertilizers, thus promoting maize crop production in a sustainable manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...