Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(30): 11547-11557, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35842939

ABSTRACT

In this work, we discuss the synthesis and characterization of a 2D coordination polymer composed of a dianionic perhydroxylated boron cluster, [B12(OH)122-], coordinated to Zn(II)-the first example of a transition metal-coordinated [B12(OH)12]2- compound. This material was synthesized via cation exchange from the starting cesium salt and then subjected to rigorous characterization prior to and after thermal activation. Numerous techniques, including XRD, FTIR, SEM, TGA, and solid-state NMR revealed a 2D coordination polymer composed of sheets of Zn(II) ions intercalated between planes of boron clusters. The as-synthesized material was then evacuated of solvent via thermal treatment, and atomic-level changes from this transformation were elucidated through a combination of 1D and 2D solid-state NMR analyses of 11B and 1H nuclei, suggesting the full removal of coordinated solvent molecules. Evidence also suggested that [B12(OH)122-] can adjust its coordination to Zn(II) in the solid-state through hemilability of its numerous -OH ligands.

2.
J Phys Chem Lett ; 12(1): 13-18, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33296205

ABSTRACT

A set of two dodecaborate [B12(OR)12]1- radical cluster anions containing a dense layer of fluorinated end-groups provides nuclear spin hyperpolarization via the dissolution dynamic nuclear polarization (D-DNP) technique. We show that these clusters can enhance 19F nuclear magnetic resonance (NMR) signals. Importantly, given the inherent radical delocalization in dodecaborate-based clusters, these species are compatible with reactive compounds such as Lewis acids, providing ∼1000-2000 times of signal enhancement for B(C6F5)3 in liquid state NMR spectroscopy experiments at 9.4 Tesla. This observation suggests that 3D aromatic radicals can provide advantages over the conventional radical species that are currently used for DNP such as 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) by showing superior chemical compatibility. The ability to hyperpolarize reactive compounds using [B12(OR)12]1- cluster radicals opens up new applications of reaction monitoring by D-DNP NMR spectroscopy, including the observation of catalytically active species in complex reaction mixtures.

3.
Adv Funct Mater ; 30(28): 2001800, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32684909

ABSTRACT

Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)-based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox-potential-driven. Remarkably, X-ray scattering shows that despite their large 2-nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.

SELECTION OF CITATIONS
SEARCH DETAIL
...