Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921236

ABSTRACT

In this study, a facile approach for simultaneous determination of dopamine (DA) and tryptophan (TRP) using a 3D goethite-spongin-modified carbon paste electrode is reported. The prepared electrode exhibited excellent electrochemical catalytic activity towards DA and TRP oxidation. The electrochemical sensing of the modified electrode was investigated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Through differential pulse voltammetry analysis, two well-separated oxidation peaks were observed at 28 and 77 mV, corresponding to the oxidation of DA and TRP at the working electrode, with a large peak separation of up to 490 mV. DA and TRP were determined both individually and simultaneously in their dualistic mixture. As a result, the anodic peak currents and the concentrations of DA and TRP were found to exhibit linearity within the ranges of 4-246 µM for DA and 2 to 150 µM for TRP. The detection limits (S/N = 3) as low as 1.9 µM and 0.37 µM were achieved for DA and TRP, respectively. The proposed sensor was successfully applied to the simultaneous determination of DA and TRP in human urine samples with satisfactory recoveries (101% to 116%).

2.
Biomimetics (Basel) ; 8(7)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37999174

ABSTRACT

The structural biopolymer spongin in the form of a 3D scaffold resembles in shape and size numerous species of industrially useful marine keratosan demosponges. Due to the large-scale aquaculture of these sponges worldwide, it represents a unique renewable source of biological material, which has already been successfully applied in biomedicine and bioinspired materials science. In the present study, spongin from the demosponge Hippospongia communis was used as a microporous template for the development of a new 3D composite containing goethite [α-FeO(OH)]. For this purpose, an extreme biomimetic technique using iron powder, crystalline iodine, and fibrous spongin was applied under laboratory conditions for the first time. The product was characterized using SEM and digital light microscopy, infrared and Raman spectroscopy, XRD, thermogravimetry (TG/DTG), and confocal micro X-ray fluorescence spectroscopy (CMXRF). A potential application of the obtained goethite-spongin composite in the electrochemical sensing of dopamine (DA) in human urine samples was investigated, with satisfactory recoveries (96% to 116%) being obtained.

3.
Mar Drugs ; 21(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37755073

ABSTRACT

Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as "Iron-Spongin", which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of "Iron-spongin" but also opens the door to other applications of these multifunctional materials.


Subject(s)
Iron , Porifera , Animals , Biomimetics , Dopamine
4.
Mar Drugs ; 21(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37367659

ABSTRACT

Aminopolysaccharide chitin is one of the main structural biopolymers in sponges that is responsible for the mechanical stability of their unique 3D-structured microfibrous and porous skeletons. Chitin in representatives of exclusively marine Verongiida demosponges exists in the form of biocomposite-based scaffolds chemically bounded with biominerals, lipids, proteins, and bromotyrosines. Treatment with alkalis remains one of the classical approaches to isolate pure chitin from the sponge skeleton. For the first time, we carried out extraction of multilayered, tube-like chitin from skeletons of cultivated Aplysina aerophoba demosponge using 1% LiOH solution at 65 °C following sonication. Surprisingly, this approach leads not only to the isolation of chitinous scaffolds but also to their dissolution and the formation of amorphous-like matter. Simultaneously, isofistularin-containing extracts have been obtained. Due to the absence of any changes between the chitin standard derived from arthropods and the sponge-derived chitin treated with LiOH under the same experimental conditions, we suggest that bromotyrosines in A. aerophoba sponge represent the target for lithium ion activity with respect to the formation of LiBr. This compound, however, is a well-recognized solubilizing reagent of diverse biopolymers including cellulose and chitosan. We propose a possible dissolution mechanism of this very special kind of sponge chitin.


Subject(s)
Chitosan , Porifera , Animals , Chitin/chemistry , Skeleton/metabolism , Bandages , Porifera/metabolism
5.
Materials (Basel) ; 14(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923274

ABSTRACT

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, and chemical and thermal stability, mesoporous carbons can be considered modern carriers for active pharmaceutical ingredients whose effectiveness needs frequent dosing algorithms. Here, the novel benzocaine delivery systems based on ordered mesoporous carbons of the cubic structure were obtained with the use of a hard template method and functionalization with amine groups at 40 °C for 8 h. It has been shown that amine grafting strongly modifies the surface chemistry and textural parameters of carbons. All samples indicated good sorption ability towards benzocaine, with evident improvement following the functionalization with the amine groups. The sorption capacity and drug release kinetics were strongly affected by the porosity of carbon carriers and the surface functional groups. The smallest amount of benzocaine (~12%) was released from pristine mesoporous carbon, which could be correlated with strong API-carrier interactions. Faster and more efficient release of the drug was observed in the case of triethylenetetramine modified carbon (~62%). All benzocaine delivery platforms based on amine-grafted mesoporous carbons revealed high permeability through the artificial membrane.

SELECTION OF CITATIONS
SEARCH DETAIL
...