Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(14): 9858-9872, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35819182

ABSTRACT

CD137 (4-1BB) is a co-stimulatory receptor on immune cells and Nectin-4 is a cell adhesion molecule that is overexpressed in multiple tumor types. Using a series of poly(ethylene glycol) (PEG)-based linkers, synthetic bicyclic peptides targeting CD137 were conjugated to Bicycles targeting Nectin-4. The resulting bispecific molecules were potent CD137 agonists that require the presence of both Nectin-4-expressing tumor cells and CD137-expressing immune cells for activity. A multipronged approach was taken to optimize these Bicycle tumor-targeted immune cell agonists by exploring the impact of chemical configuration, binding affinity, and pharmacokinetics on CD137 agonism and antitumor activity. This effort resulted in the discovery of BT7480, which elicited robust CD137 agonism and maximum antitumor activity in syngeneic mouse models. A tumor-targeted approach to CD137 agonism using low-molecular-weight, short-acting molecules with high tumor penetration is a yet unexplored path in the clinic, where emerging data suggest that persistent target engagement, characteristic of biologics, may lead to suboptimal immune response.


Subject(s)
Neoplasms , Animals , Cell Adhesion Molecules , Mice , Nectins , Neoplasms/drug therapy , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
2.
J Immunother Cancer ; 9(1)2021 01.
Article in English | MEDLINE | ID: mdl-33500260

ABSTRACT

BACKGROUND: In contrast to immune checkpoint inhibitors, the use of antibodies as agonists of immune costimulatory receptors as cancer therapeutics has largely failed. We sought to address this problem using a new class of modular synthetic drugs, termed tumor-targeted immune cell agonists (TICAs), based on constrained bicyclic peptides (Bicycles). METHODS: Phage libraries displaying Bicycles were panned for binders against tumor necrosis factor (TNF) superfamily receptors CD137 and OX40, and tumor antigens EphA2, Nectin-4 and programmed death ligand 1. The CD137 and OX40 Bicycles were chemically conjugated to tumor antigen Bicycles with different linkers and stoichiometric ratios of binders to obtain a library of low molecular weight TICAs (MW <8 kDa). The TICAs were evaluated in a suite of in vitro and in vivo assays to characterize their pharmacology and mechanism of action. RESULTS: Linking Bicycles against costimulatory receptors (e.g., CD137) to Bicycles against tumor antigens (e.g., EphA2) created potent agonists that activated the receptors selectively in the presence of tumor cells expressing these antigens. An EphA2/CD137 TICA (BCY12491) efficiently costimulated human peripheral blood mononuclear cells in vitro in the presence of EphA2 expressing tumor cell lines as measured by the increased secretion of interferon γ and interleukin-2. Treatment of C57/Bl6 mice transgenic for the human CD137 extracellular domain (huCD137) bearing EphA2-expressing MC38 tumors with BCY12491 resulted in the infiltration of CD8+ T cells, elimination of tumors and generation of immunological memory. BCY12491 was cleared quickly from the circulation (plasma t1/2 in mice of 1-2 hr), yet intermittent dosing proved effective. CONCLUSION: Tumor target-dependent CD137 agonism using a novel chemical approach (TICAs) afforded elimination of tumors with only intermittent dosing suggesting potential for a wide therapeutic index in humans. This work unlocks a new path to effective cancer immunotherapy via agonism of TNF superfamily receptors.


Subject(s)
Neoplasms/drug therapy , Peptides, Cyclic/administration & dosage , Receptor, EphA2/agonists , Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists , A549 Cells , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Female , HT29 Cells , Humans , Jurkat Cells , Mice , Mice, Transgenic , Neoplasms/genetics , Neoplasms/immunology , PC-3 Cells , Peptide Library , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Receptors, OX40/metabolism , Xenograft Model Antitumor Assays
3.
Sci Transl Med ; 12(547)2020 06 10.
Article in English | MEDLINE | ID: mdl-32522808

ABSTRACT

Zika virus infection in humans has been associated with serious reproductive and neurological complications. At present, no protective antiviral drug treatment is available. Here, we describe the testing and evaluation of the antiviral drug, galidesivir, against Zika virus infection in rhesus macaques. We conducted four preclinical studies in rhesus macaques to assess the safety, antiviral efficacy, and dosing strategies for galidesivir (BCX4430) against Zika virus infection. We treated 70 rhesus macaques infected by various routes with the Puerto Rico or Thai Zika virus isolates. We evaluated galidesivir administered as early as 90 min and as late as 72 hours after subcutaneous Zika virus infection and as late as 5 days after intravaginal infection. We evaluated the efficacy of a range of galidesivir doses with endpoints including Zika virus RNA in plasma, saliva, urine, and cerebrospinal fluid. Galidesivir dosing in rhesus macaques was safe and offered postexposure protection against Zika virus infection. Galidesivir exhibited favorable pharmacokinetics with no observed teratogenic effects in rats or rabbits at any dose tested. The antiviral efficacy of galidesivir observed in the blood and central nervous system of infected animals warrants continued evaluation of this compound for the treatment of flaviviral infections.


Subject(s)
Hepatitis C, Chronic , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents/therapeutic use , Macaca mulatta , Rabbits , Rats , Viremia/drug therapy , Zika Virus Infection/drug therapy
4.
Am J Pathol ; 190(7): 1530-1544, 2020 07.
Article in English | MEDLINE | ID: mdl-32246920

ABSTRACT

HIV-associated sensory neuropathy is a common neurologic comorbidity of HIV infection and prevails in the post-antiretroviral therapy (ART) era. HIV infection drives pathologic changes in the dorsal root ganglia (DRG) through inflammation, altered metabolism, and neuronal dysfunction. Herein, we characterized specific neuronal populations in an SIV-infected macaque model with or without ART. DRG neuronal populations were identified by neurofilament H-chain 200, I-B4 isolectin (IB4), or tropomyosin receptor kinase A expression and assessed for cell body diameter, population size, apoptotic markers, and regeneration signaling. IB4+ and tropomyosin receptor kinase A-positive neurons showed a reduced cell body size (atrophy) and decreased population size (cell death) in the DRG of SIV-infected animals compared with uninfected animals. IB4+ nonpeptidergic neurons were less affected in the presence of ART. DRG neurons showed accumulation of cleaved caspase 3 (apoptosis) and nuclear-localized activating transcription factor 3 (regeneration) in SIV infection, which was significantly lower in uninfected animals and SIV-infected animals receiving ART. Nonpeptidergic neurons predominantly colocalized with cleaved caspase 3 staining. Nonpeptidergic and peptidergic neurons colocalized with nuclear-accumulated activating transcription factor 3, showing active regeneration in sensory neurons. These data suggest that nonpeptidergic and peptidergic neurons are susceptible to pathologic changes from SIV infection, and intervention with ART did not fully ameliorate damage to the DRG, specifically to peptidergic neurons.


Subject(s)
Atrophy/pathology , Nociceptors/pathology , Simian Acquired Immunodeficiency Syndrome/pathology , Animals , Anti-Retroviral Agents/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/pathology , Lectins/metabolism , Macaca mulatta , Male , Nociceptors/drug effects , Nociceptors/metabolism , Polyneuropathies/pathology , Polyneuropathies/virology , Receptor, trkA/metabolism , Simian Immunodeficiency Virus
5.
Nat Commun ; 9(1): 5429, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30575753

ABSTRACT

The precise time when the viral reservoir is seeded during acute HIV-1 infection remains unclear. We previously demonstrated that the viral reservoir was seeded by day 3 following SIVmac251 infection in rhesus monkeys. Here we report the impact of initiating ART on day 0 (6 h), 1, 2, or 3 following intrarectal SIVmac251 infection in 20 rhesus monkeys (N = 5/group). After 6 months of daily suppressive ART, antiretroviral drugs were discontinued, and viral rebound was monitored. 0% (0 of 5), 20% (1 of 5), 60% (3 of 5), and 100% (5 of 5) of animals that initiated ART on days 0 (6 h), 1, 2, or 3, respectively, showed viral rebound following ART discontinuation and correlated with integrated viral DNA in lymph node CD4+ T cells. These data demonstrate that the viral reservoir is seeded within the first few days of infection and that early ART initiation limits the viral reservoir.


Subject(s)
Anti-Retroviral Agents/administration & dosage , Simian Acquired Immunodeficiency Syndrome/virology , Animals , CD4-Positive T-Lymphocytes/immunology , Drug Therapy, Combination , Macaca mulatta , Male , Models, Biological , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology
6.
Nature ; 563(7733): E33, 2018 11.
Article in English | MEDLINE | ID: mdl-30315222

ABSTRACT

In this Brief Communications Arising Comment, the first three authors (Osuna, Lim and Kublin) should have been listed as equally contributing authors; this has been corrected online.

8.
Virus Res ; 254: 15-20, 2018 08 02.
Article in English | MEDLINE | ID: mdl-28811170

ABSTRACT

The 2015 Brazilian Zika virus outbreak sparked a rapid response to control the spread of the virus. What was first understood to be a mild self-resolving infection is now linked to significant neurological defects in both neonates and adults. The WHO declared the 2016 Zika epidemic a public health emergency and issued an unprecedented recommendation to women in affected regions to delay pregnancy until the risks surrounding Zika virus could be understood, or the epidemic contained. Since that time, considerable effort has been dedicated to understanding Zika transmission and pathogenesis to aid the development of drugs and vaccines. Several models have emerged to study numerous facets of Zika biology; this review details the various model systems.


Subject(s)
Disease Models, Animal , Zika Virus Infection/virology , Animals , Antiviral Agents/therapeutic use , Cell Culture Techniques , Host-Pathogen Interactions , Mice , Primates , Viral Vaccines , Zika Virus/physiology , Zika Virus Infection/pathology , Zika Virus Infection/prevention & control , Zika Virus Infection/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...