Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(28): 10784-10793, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39027300

ABSTRACT

We report metal-free organic 1,2-diketones that exhibit fast and highly efficient room-temperature phosphorescence (RTP) with high colour purity under various conditions, including solutions. RTP quantum yields reached 38.2% in solution under Ar, 54% in a polymer matrix in air, and 50% in crystalline solids in air. Moreover, the narrowband RTP consistently dominated the steady-state emission, regardless of the molecular environment. Detailed mechanistic studies using ultrafast spectroscopy, single-crystal X-ray structure analysis, and theoretical calculations revealed picosecond intersystem crossing (ISC) followed by RTP from a planar conformation. Notably, the phosphorescence rate constant k p was unambiguously established as ∼5000 s-1, which is comparable to that of platinum porphyrins (representative heavy-metal phosphor). This inherently large k p enabled the high-efficiency RTP across diverse molecular environments, thus complementing the streamlined persistent RTP approach. The mechanism behind the photofunction has been elucidated as follows: (1) the large k p is due to efficient intensity borrowing of the T1 state from the bright S3 state, (2) the rapid ISC occurs from the S1 to the T3 state because these states are nearly isoenergetic and have a considerable spin-orbit coupling, and (3) the narrowband emission results from the minimal geometry change between the T1 and S0 states. Such mechanistic understanding based on molecular orbitals, as well as the structure-RTP property relationship study, highlighted design principles embodied by the diketone planar conformer. The fast RTP strategy enables development of organic phosphors with emissions independent of environmental conditions, thereby offering alternatives to precious-metal based phosphors.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6215-6219, 2021 11.
Article in English | MEDLINE | ID: mdl-34892535

ABSTRACT

The Trail Making test (TMT) is a widely used neuropsychological test to assess the cognitive function of patients. This paper presents the analysis method of pen-point trajectory during the TMT based on a time base generator (TBG). In the proposed method, the movement segments between targets are first extracted from pen-point trajectories, which are measured during performance of the TMT on an iPad. By fitting the extracted trajectories with a TBG-based trajectory generation model, the proposed method can then calculate quantitative indices representing the shape and collapse of the velocity profile. In the experiment, we analyzed TMT data from 25 stroke patients who were classified into three groups according to their scores on the Mini-Mental State Examination (MMSE). The results revealed that most of the measured inter-target trajectories had unimodal bell-shaped velocity profiles, as seen in reaching movements. Furthermore, we found that the degree of collapse in the velocity profile shape increased significantly when the cognitive function decreased.


Subject(s)
Cognition , Stroke , Humans , Mental Status and Dementia Tests , Neuropsychological Tests , Trail Making Test
SELECTION OF CITATIONS
SEARCH DETAIL
...