Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892698

ABSTRACT

One-carbon metabolism (OCM) is a complex and interconnected network that undergoes drastic changes during pregnancy. In this study, we investigated the longitudinal distribution of OCM-related metabolites in maternal and cord blood and explored their relationships. Additionally, we conducted cross-sectional analyses to examine the interrelationships among these metabolites. This study included 146 healthy pregnant women who participated in the Chiba Study of Mother and Child Health. Maternal blood samples were collected during early pregnancy, late pregnancy, and delivery, along with cord blood samples. We analyzed 18 OCM-related metabolites in serum using stable isotope dilution liquid chromatography/tandem mass spectrometry. We found that serum S-adenosylmethionine (SAM) concentrations in maternal blood remained stable throughout pregnancy. Conversely, S-adenosylhomocysteine (SAH) concentrations increased, and the total homocysteine/total cysteine ratio significantly increased with advancing gestational age. The betaine/dimethylglycine ratio was negatively correlated with total homocysteine in maternal blood for all sampling periods, and this correlation strengthened with advances in gestational age. Most OCM-related metabolites measured in this study showed significant positive correlations between maternal blood at delivery and cord blood. These findings suggest that maternal OCM status may impact fetal development and indicate the need for comprehensive and longitudinal evaluations of OCM during pregnancy.


Subject(s)
Fetal Blood , Homocysteine , S-Adenosylmethionine , Humans , Female , Fetal Blood/metabolism , Fetal Blood/chemistry , Pregnancy , Adult , Longitudinal Studies , Homocysteine/blood , Japan , S-Adenosylmethionine/blood , S-Adenosylhomocysteine/blood , Cross-Sectional Studies , Gestational Age , Carbon/metabolism , Betaine/blood , Cysteine/blood , Tandem Mass Spectrometry , Glycine/blood , East Asian People , Sarcosine/analogs & derivatives
2.
Pharmaceutics ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38931883

ABSTRACT

Glycerophospholipids have hydrophobic and hydrophilic moieties. Previous studies suggest that phospholipids with different moieties have different effects on rodent behavior; however, the relationship between chemical structures and behavioral effects remains unclear. To clarify the functions of phospholipid moieties, we injected male rats with phospholipids with different moieties and conducted behavioral tests. Exploratory activity was reduced by phosphatidylethanolamine (PE)(18:0/22:6) but not PE(18:0/18:0) or PE(18:0/20:4). Conversely, exploratory activity was increased by plasmanyl PE(16:0/22:6), which harbors an alkyl-ether linkage, but not by phosphatidylcholine (PC)(16:0/22:6) or plasmanyl PC(16:0/22:6). Docosahexaenoic acid (DHA)(22:6) and an alkyl-ether linkage in PE were thus postulated to be involved in exploratory activity. Anxiety-like behavior was reduced by plasmenyl PC(18:0/20:4), which harbors a vinyl-ether linkage, but not by PC(18:0/20:4) or plasmanyl PC(18:0/20:4), suggesting the anxiolytic effects of vinyl-ether linkage. The activation of social interaction was suppressed by PE(18:0/18:0), PE(18:0/22:6), PC(16:0/22:6), plasmanyl PE(16:0/22:6), and plasmanyl PC(16:0/22:6) but not by PE(18:0/20:4), plasmenyl PE(18:0/20:4), or plasmanyl PC(18:0/22:6). DHA may suppress social interaction, whereas arachidonic acid(20:4) or a combination of alkyl-ether linkage and stearic acid(18:0) may restore social deficits. Our findings indicate the characteristic effects of different phospholipid moieties on rat behavior, and may help to elucidate patterns between chemical structures and their effects.

3.
Nutrients ; 15(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38004134

ABSTRACT

Homocysteine is a methionine metabolism intermediate and its increased blood levels are associated with a higher risk of noncommunicable diseases. Reportedly, blood homocysteine levels increase with inadequate folate, vitamin B6, and vitamin B12 intake; however, its relationship with dietary factors other than these three vitamins remains unknown. Thus, we investigated the relationship of homocysteine with other nutrient intake. We performed a dietary survey on 227 young women using a food record with approximate amounts for 7 consecutive days in conjunction with digital imaging. We collected early morning fasting blood samples the day after the dietary survey was completed and analyzed the serum homocysteine levels. We observed that the serum homocysteine concentrations were significantly negatively associated with soluble, insoluble, and total fiber intake. In addition, participants with high fruit and mushroom intake displayed lower serum homocysteine concentrations, suggesting dietary fiber involvement from these foods. However, we observed no serum homocysteine concentration-related association with cereals and vegetables (well-documented dietary fiber sources) or with fruits and mushrooms. In conclusion, fiber quality-related differences could thus be caused by different sources, including antioxidant components such as fruit polyphenols and mushroom antioxidant and anti-inflammatory factors.


Subject(s)
Diet , East Asian People , Homocysteine , Female , Humans , Antioxidants , Dietary Fiber , Folic Acid , Homocysteine/blood , Vitamin B 12 , Vitamins
4.
Int J Mol Sci ; 24(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37446171

ABSTRACT

Maintaining optimal one-carbon metabolism (OCM) is essential for health and pregnancy. In this cross-sectional study, folate status was assessed based on 5-methyltetrahydrofolate (5-MTHF) levels, and the association between 5-MTHF and OCM-related metabolites was investigated in 227 female Japanese university students aged 18-25 years. The participants were divided into high and low 5-MTHF groups based on their folate status. Serum samples of the participants were collected while they were fasting, and 18 OCM-related metabolites were measured using stable-isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The association between serum 5-MTHF and OCM-related metabolite concentrations was assessed using Spearman's rank correlation coefficient. Serum 5-MTHF concentrations were negatively correlated with total homocysteine (tHcy) concentrations and positively correlated with S-adenosylmethionine (SAM) and total cysteine (tCys) concentrations. Serum 5-MTHF concentrations demonstrated a stronger negative correlation with tHcy/tCys than with tHcy alone. The negative correlation between betaine and tHcy concentrations was stronger in the low 5-MTHF group than in the high 5-MTHF group. The 5-MTHF status could be linked to Hcy flux into the transsulfuration pathway via SAM. Therefore, the tHcy/tCys ratio may be a more sensitive indicator of the 5-MTHF status than tHcy alone. Furthermore, a low 5-MTHF status can enhance Hcy metabolism via betaine.


Subject(s)
Betaine , Folic Acid , Pregnancy , Humans , Female , Adolescent , Young Adult , Adult , Cross-Sectional Studies , S-Adenosylmethionine , Carbon , Homocysteine
5.
Nutrients ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771429

ABSTRACT

The increase in fetal requirements of long-chain polyunsaturated fatty acids (LCPUFAs) during pregnancy alters maternal fatty acid metabolism, and therefore, fatty acid desaturase (FADS) gene polymorphisms may change blood fatty acid composition or concentration differently during pregnancy. We investigated the relationship between a FADS1 single-nucleotide polymorphism (SNP) and maternal serum LCPUFA levels in Japanese pregnant women during the first and third trimesters and at delivery. Two hundred and fifty-three pregnant women were included, and fatty acid compositions of glycerophospholipids in serum (weight %) and the FADS1 SNP rs174547 (T/C) were analyzed. LCPUFAs, including arachidonic acid (ARA) and docosahexaenoic acid (DHA), significantly decreased from the first to the third trimester of pregnancy. Furthermore, DHA significantly decreased from the third trimester of pregnancy to delivery. At all gestational stages, linoleic acid (LA) and α-linolenic acid were significantly higher with the number of minor FADS1 SNP alleles, whereas γ-linolenic acid and ARA and the ARA/LA ratio were significantly lower. DHA was significantly lower with the number of minor FADS1 SNP alleles only in the third trimester and at delivery, suggesting that genotype effects become more obvious as pregnancy progresses.


Subject(s)
Fatty Acid Desaturases , Fatty Acids , Glycerophospholipids , Female , Humans , Pregnancy , Arachidonic Acid , Docosahexaenoic Acids , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids/chemistry , Linoleic Acid , Polymorphism, Single Nucleotide
6.
Nutrients ; 12(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492914

ABSTRACT

"Total" folate in blood has usually been measured to evaluate the folate status of pregnant women. However, folate is composed of many metabolites. The main substrate is 5-methyltetrahydrofolate (5-MTHF), with folic acid (FA) representing a very small component as an unmetabolized species in blood. We longitudinally evaluated 5-MTHF, FA and total homocysteine in maternal and cord blood from Japanese pregnant women. Subjects were 146 pregnant women who participated in the Chiba study of Mother and Child Health (C-MACH) prospective cohort study. Sera were obtained in early and late pregnancy, at delivery, and from cord blood. Species levels were measured by isotope-dilution mass spectrometry. Both 5-MTHF and FA levels were lower than reported levels from pregnant women in populations from countries with mandatory FA fortification. As gestational age progressed, serum 5-MTHF levels decreased, whereas serum FA levels were slightly reduced only at delivery compared to early pregnancy. A significant negative association between serum 5-MTHF and total homocysteine was shown at all examined times, but no associations with FA were evident. At delivery, cord 5-MTHF was significantly higher than maternal levels, while FA again showed no significant correlation. These results suggest that 5-MTHF is actively transported to the fetus through placental transporters and may reflect folate status during pregnancy as a physiologically important species.


Subject(s)
Fetal Blood/metabolism , Folic Acid/blood , Maternal-Fetal Exchange , Pregnant Women , Tetrahydrofolates/blood , Adult , Asian People , Female , Homocysteine/blood , Humans , Japan , Longitudinal Studies , Placenta/metabolism , Pregnancy , Prospective Studies , Young Adult
7.
Clin Exp Hypertens ; 36(6): 410-8, 2014.
Article in English | MEDLINE | ID: mdl-24164360

ABSTRACT

Nitrite has become a topic of interest in the field of medical research because of its potential therapeutic role as an alternative source of nitric oxide (NO). While the bioconversion of nitrite to NO occurs via either nonenzymatic or enzymatic reduction under acidic or hypoxic conditions, little is known about its conversion to NO under normoxic conditions. Because of a recent report of aldehyde dehydrogenase 2 (ALDH2)-catalyzed glyceryl trinitrate (GTN) vasorelaxation by denitration of GTN to 1,2-glyceryl dinitrate (1,2-GDN) and nitrite, we therefore investigated a catalytic activity of ALDH2 for nitrite reduction and subsequent effect on N(ω)-nitro-l-arginine methyl ester (l-NAME)-induced hypertension in normoxic rat. Male Sprague-Dawley rats treated with l-NAME in drinking water for 3 weeks developed hypertension with significantly reduced plasma levels of nitrite and nitrate. The intravenous injection of sodium nitrite lowered the arterial pressure in a dose-dependent manner (17, 50 and 150 µmol/kg). Pretreatment with ALDH2 inhibitors (cyanamide and chloral hydrate) partially inhibited the hypotensive responses to sodium nitrite. In addition, cyanamide significantly delayed the nitrite clearance from plasma and most of the organs examined during the experimental period. These results suggest that ALDH2 may be at least in part involved in nitrite-mediated hypotensive effects and nitrite catalysis in many organs of normoxic rats.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Antihypertensive Agents/pharmacology , Hypertension/chemically induced , Hypertension/metabolism , Mitochondrial Proteins/metabolism , NG-Nitroarginine Methyl Ester/adverse effects , Sodium Nitrite/pharmacology , Aldehyde Dehydrogenase, Mitochondrial , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Disease Models, Animal , Dose-Response Relationship, Drug , Hydrazines/pharmacology , Male , Nitrates/blood , Nitric Oxide/metabolism , Nitroglycerin/pharmacology , Rats , Rats, Sprague-Dawley , Time Factors
8.
J Biochem ; 144(3): 349-55, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18511450

ABSTRACT

The vitamin A derivative, retinoic acid (RA) has various biological effects in mammalian cells and tissues. It is well known that RA induces differentiation of leukemia cells and inhibits cell growth. There are two pathways for RA action; one via RA nuclear receptors (RARs), and one via acylation of proteins by RA (retinoylation). However, an understanding of which actions of RA occur via RARs and which occur via retinoylation is lacking. Thus, we undertook the examination of HL60 proteins using anti-RA monoclonal antibodies (ARMAs). These ARMAs showed specific binding to proteins in a saturable manner depending on protein and antibody concentration. Proteins eluted by Mono Q anion exchange chromatography and separated using two-dimensional polyacrylamide gel electrophoresis were detected by ARMAs. One of these ARMA-bound proteins in HL60 cells was identified as alpha-actinin. These results indicate that retinoylated proteins in HL60 cells can be recognized by ARMAs and that alpha-actinin modified by RA may play a significant role in RA-induced differentiation, including the promotion of cytomorphology changes.


Subject(s)
Antibodies, Monoclonal/chemistry , Tretinoin/chemistry , Actinin/chemistry , Amino Acid Sequence , Anions , Cell Differentiation , Chromatography, Ion Exchange/methods , Electrophoresis, Gel, Two-Dimensional , HL-60 Cells , Humans , Ions , Molecular Sequence Data , Neoplasm Proteins/chemistry , Protein Binding , Subcellular Fractions/metabolism
9.
J Biochem ; 138(4): 493-500, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16272145

ABSTRACT

Retinoylation (acylation of proteins by retinoic acid) is considered as one mechanism of retinoic acid (RA) action occurring in cells in vitro and in vivo. Previously, our studies showed that in rat tissues the formation of retinoyl-CoA from RA, the first step of retinoylation, required ATP, CoA and MgCl(2). In the current study, we examined whether the transfer of retinoyl-CoA into proteins, the second step of retinoylation, occurs in rat tissues. [(3)H]-Labeled-retinoyl-CoA bound covalently to proteins in rat liver, kidney, testis, and brain. The levels of incorporation of retinoyl-CoA into proteins were higher in vitamin A-deficient rats than in normal ones. The formation of retinoylated proteins depended on the incubation time, and the concentrations of retinoyl-CoA and homogenate. The reaction was suppressed by fatty acyl-CoAs and palmitic acid, but not by arachidonic acid. The Vmax and Km values for retinoyl-CoA in the formation of retinoylated proteins using a crude liver extract were estimated to be 2,597.3 pmol/min/mg protein and 9.5 x 10(-5) M, respectively. Retinoylated proteins formed from retinoyl-CoA, including a 17 kDa protein exhibiting high radioactivity, disappeared in the presence of 2-mercaptoethanol, indicating that RA was linked to the proteins through a thioester bond. These results demonstrate that retinoylation in rat tissues occurs via retinoyl-CoA formed from RA. This process may play a significant physiological role in cells.


Subject(s)
Protein Biosynthesis , Tretinoin/metabolism , Acyl Coenzyme A/pharmacology , Acylation , Animals , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , In Vitro Techniques , Male , Palmitic Acid/pharmacology , Rats , Rats, Sprague-Dawley
10.
Bioorg Med Chem ; 11(15): 3255-60, 2003 Jul 31.
Article in English | MEDLINE | ID: mdl-12837535

ABSTRACT

The initial finding that the p-methylaminophenol (6) exhibited antioxidant activity led us to investigate whether the length of alkyl chains linked to the aminophenol residue might affect antioxidative activity. Therefore, we synthesized p-butylaminophenol (5), p-hexylaminophenol (4), p-octylaminophenol (3), and p-methoxybenzylaminophenol (7). All p-alkylaminophenols quenched alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH) radicals, with 7 being the most potent DPPH radical scavenger. Lipid peroxidation by rat liver microsomes was reduced by p-alkylaminophenols in dose- and aminophenol alkyl chain length-dependent fashion (3>4>5>6), with 3 being the most potent lipid peroxidation inhibitor, at approximately 350-fold higher potency than 6. These results indicate that elongation of alkyl chains in p-alkylaminophenols may increase antioxidative activity, and that p-alkylaminophenols may potentially be useful in the development of antioxidants.


Subject(s)
Aminophenols/chemistry , Aminophenols/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Dose-Response Relationship, Drug , Microsomes, Liver/drug effects , Microsomes, Liver/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...