Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1678: 463353, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35908510

ABSTRACT

A novel silica-based adsorbent was synthesized by impregnating macroporous silica polymer composite (SiO2-P) particles with a mixture of N,N,N',N'-tetra-2-ethylhexyl-thiodiglycolamide (TEHTDGA) and tri-n-octylamine (TOA). Then, the possibility of separating Pd(II) and other metal ions from simulated high-level liquid waste (HLLW) using the newly synthesized adsorbent (TEHTDGA + TOA)/SiO2-P was evaluated based on various adsorption characteristics obtained via batch-adsorption experiments, such as the HNO3 concentration, contact time, reaction temperature, adsorption isotherm, and chemical stability of the adsorbent. Furthermore, column separation experiments were performed based on the characteristics obtained from the batch-adsorption experiment, and the possibility of simultaneous separation of multiple metal ions was examined. The experimental results revealed that (TEHTDGA + TOA)/SiO2-P performs well in the separation of multiple metal ions from simulated HLLW.


Subject(s)
Metals , Silicon Dioxide , Adsorption , Ions , Kinetics , Polymers
2.
Anal Sci ; 36(12): 1541-1545, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-32863335

ABSTRACT

The adsorption behaviors of a silica-based hybrid donor adsorbent (TAMIA-EH+1-dodecanol)/SiO2-P towards Pd(II) were investigated under the effect of the contact time, temperature etc. in simulated high-level liquid waste. The adsorption rates of Pd(II) and Re(VII) were fairly fast and could reach the equilibrium state in only 1 h compared with other co-existing metal ions. The adsorption kinetics of Pd(II) was found to fit well with the pseudo-first order model. Even though with increasing the concentration of HNO3 above 1 M, the adsorption performance of (TAMIA-EH+1-dodecanol)/SiO2-P decreased gradually; it still exhibited a better selectivity towards Pd(II) when [HNO3] > 0.5 M. The adsorption isotherms of Pd(II) and Re(VII) were well-described by the Langmuir isotherm model, while the Freundlich isotherm model was considered to be more suitable for the adsorption of Ru(III), Zr(IV) and Mo(VI). A high temperature of an aqueous solution was not good for the effective recovery of Pd(II). The calculated thermodynamic parameters revealed that the adsorption of Pd(II) was exothermic in nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...