Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(17): 7571-7579, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38606499

ABSTRACT

The smectite group of clay minerals (smectites) consists of negatively charged clay layers and interlayer exchangeable cations. They are spontaneously delaminated in water to form single clay layers when the interlayer cations are small alkaline cations such as Na+ or Li+. This phenomenon known as osmotic swelling has fundamental importance in constructing novel clay-based nanomaterials. However, osmotic swelling of smectites has not been systematically investigated in organic solvents although this phenomenon should be useful for developing novel clay-organic nanocomposites. We report herein that montmorillonite, a typical smectite, with monovalent and divalent inorganic interlayer cations shows osmotic swelling accompanied by delamination of clay layers in water-acetonitrile and water-2-propanol mixed solvents, although inorganic interlayer cations have been believed to be inappropriate for delamination of smectites in organic solvents. The delamination is confirmed by a combination of macroscopic sample appearances, XRD patterns, and SEM images. Montmorillonite with interlayer Na+ or Li+ ions shows osmotic swelling in pure water and the mixed solvents but not in pure organic solvents. Montmorillonite with alkaline earth dications in the interlayer spaces is swollen in water-organic mixed solvents but not in either pure water or organic solvents alone. Partial delamination in several systems can be clarified from SEM images even though the sample appearances and XRD patterns do not give firm evidence. Such non-uniform swelling behavior of montmorillonite is related to the disordered stacking of the aluminosilicate layers with different morphologies in the clay powders as observed by SEM.

2.
Lab Chip ; 23(4): 609-623, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36633172

ABSTRACT

Three-dimensional (3D) cell culture, which provides an in vivo-like environment in vitro unlike the conventional two-dimensional (2D) cell culture, has attracted much attention from researchers. Although various 3D cell culture methods have been developed, information on a method using inorganic nanoclay is scant. Here, we report that hectorite, an inorganic layered silicate, can be used as an auxiliary material for 3D cell culture. Human colon cancer cell lines cultured in a medium containing 0.01% synthetic hectorite spontaneously formed 3D spheroids in an adherent plate. Morphologically, these spheroids were more dispersed in all directions than control spheroids generated in an ultralow adherent plate. Microarray analysis showed that FGF19, TGM2, and SERPINA3, whose expression is reportedly increased in colon cancer tissues and is related to tumorigenesis or metastasis, were upregulated in HT-29 spheroids formed using synthetic hectorite compared with those in control spheroids. Gene ontology analysis revealed upregulation of genes associated with morphogenesis, cytoskeleton, extracellular matrix, cellular uptake and secretion, signaling pathways, and gene expression regulation. Moreover, fluorescence-labeled hectorite particles were localized in the cytoplasm of individual cells in spheroids. These results suggest that the synthetic hectorite modified the physiological state of and gene expression within the cells, triggering spheroid formation with malignant characteristics. Our findings highlight a novel application of synthetic hectorite for 3D cell culture.


Subject(s)
Colorectal Neoplasms , Spheroids, Cellular , Humans , Cell Culture Techniques/methods , Silicates/pharmacology
3.
Langmuir ; 37(21): 6435-6441, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34010001

ABSTRACT

A thixotropic characteristics of aqueous gels containing smectite clay minerals were used in various industrial applications such as paint additives, which have been affected by the clay types and clay particle sizes. A model called a house-of-card arrangement of clay particles and anisotropic arrangement in aqueous gels has been proposed. We prepared different sizes of synthetic hectorite and studied them by scanning electron-assisted dielectric microscopy (SE-ADM) and simultaneous small-angle neutron scattering and rheological measurements (Rheo-SANS). The Rheo-SANS results indicated that the clay particles with the cross-sectional radius of 30 nm were clearly oriented in the direction of shear-flow (1 × 103 s-1) direction, but the anisotropic change was not observed for an aqueous gel with clays whose average radius was 19.5 nm. The present study suggested the thixotropic characteristics of aqueous gels depend on the hectorite particle size and aggregation structure under shear conditions.

4.
Adv Mater ; 29(17)2017 May.
Article in English | MEDLINE | ID: mdl-28247505

ABSTRACT

Requirements for flexible electronic substrate are successfully accomplished by green nanocomposite film fabricated with two natural components: glycol-modified biomass lignin and Li+ montmorillonite clay. In addition to these major components, a cross-linking polymer between the lignin is incorporated into montmorillonite. Multilayer-assembled structure is formed due to stacking nature of high aspect montmorillonite, resulting in thermal durability up to 573 K, low thermal expansion, and oxygen barrier property below measurable limit. Preannealing for montmorillonite and the cross-linking formation enhance moisture barrier property superior to that of industrial engineering plastics, polyimide. As a result, the film has advantages for electronic film substrate. Furthermore, these properties can be achieved at the drying temperature up to 503 K, while the polyimide films are difficult to fabricate by this temperature. In order to examine its applicability for substrate film, flexible electrodes are finely printed on it and touch sensor device can be constructed with rigid elements on the electrode. In consequence, this nanocomposite film is expected to contribute to production of functional materials, progresses in expansion of biomass usage with low energy consumption, and construction of environmental friendly flexible electronic devices.

5.
J Colloid Interface Sci ; 392: 256-265, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23141704

ABSTRACT

We have developed an effective organo-modification method at the organic solvent/distilled water interface of natural aluminosilicate clay surfaces. We also investigated the molecular arrangement of organo-modified aluminosilicate with high surface coverage in Langmuir-Blodgett films (LB) by performing out-of-plane and in-plane X-ray diffraction (XRD) measurements. In addition, the surface morphology of mixed monolayers of organo-modified aluminosilicate and several biodegradable polymers (e.g., poly(L-lactide), PLLA) was also characterized by atomic force microscopy (AFM). The in-plane XRD results of multilayers of organo-modified aluminosilicate formed by the LB method indicate the formation of a two-dimensional lattice of hydrocarbons on the aluminosilicate surface. These hydrocarbons of organo-modified reagents packed hexagonal or orthorhombic in films. Based on our experimental findings, the LB technique enabled the formation of a densely packed organo-modified aluminosilicate monolayer at the water surface. Furthermore, for mixed monolayer systems comprising an organo-modified clay with high surface coverage and biodegradable polymers, a miscible surface was observed by AFM on a mesoscopic scale, whereas those with low surface coverage formed phase-separated structures.


Subject(s)
Aluminum Silicates/chemistry , Hydrocarbons/chemistry , Molecular Structure , Particle Size , Polymers/chemistry , Surface Properties
6.
PLoS One ; 6(7): e22582, 2011.
Article in English | MEDLINE | ID: mdl-21818343

ABSTRACT

Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.


Subject(s)
Halogenation , Proteins/chemistry , Silicates/chemistry , Adsorption , Aluminum Silicates/chemistry , Animals , Cattle , Chemical Precipitation , Chickens , Crystallization , Humans , Models, Chemical , Muramidase/chemistry , Time Factors
7.
Colloids Surf B Biointerfaces ; 64(1): 88-97, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18313276

ABSTRACT

Zeolites adsorb microbial cells on their surfaces and selective adsorption for specific microorganisms was seen with certain zeolites. Tests for the adsorption ability of zeolites were conducted using various established microbial cell lines. Specific cell lines were shown to selectively absorb to certain zeolites, species to species. In order to understand the selectivity of adsorption, we tested adsorption under various pH conditions and determined the zeta-potentials of zeolites and cells. The adsorption of some cell lines depended on the pH, and some microorganisms were preferentially adsorbed at acidic pH. The values of zeta-potentials were used for calculating the electric double layer interaction energy between zeolites and microbial cells. There was a correlation between the experimental adsorption results and the interaction energy. Moreover, we evaluated the surface hydrophobicity of bacterial cells by using the microbial adherence to hydrocarbon (MATH) assay. In addition, we also applied this method for zeolites to quantify relative surface hydrophobicity. As a result, we found a correlation between the adsorption results and the hydrophobicity of bacterial cells and zeolites. These results suggested that adsorption could be explained mainly by electric double layer interactions and hydrophobic interactions. Finally, by using the zeolites Na-BEA and H-Y, we succeeded in clearly separating three representative microbes from a mixture of Escherichia coli, Bacillus subtilis and Staphylococcus aureus. Zeolites could adsorb each of the bacterial cell species with high selectivity even from a mixed suspension. Zeolites can therefore be used as effective carrier materials to provide an easy, rapid and accurate method for cell separation.


Subject(s)
Zeolites/pharmacokinetics , Adsorption , Bacillus subtilis/isolation & purification , Bacillus subtilis/physiology , Bacillus subtilis/ultrastructure , Bacterial Adhesion/physiology , Escherichia coli/cytology , Escherichia coli/physiology , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/physiology , Staphylococcus aureus/ultrastructure
8.
Appl Environ Microbiol ; 71(12): 8895-902, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16332887

ABSTRACT

Cell adsorption and selective desorption for separation of microbial cells were conducted by using chitosan-immobilized silica (CIS). When chitosan was immobilized onto silica surfaces with glutaraldehyde, bacterial cells adsorbed well and retained viability. Testing of the adsorption and desorption ability of CIS using various microbes such as Escherichia coli, Aeromonas hydrophila, Pseudomonas aeruginosa, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus casei, Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Saccharomyces cerevisiae, Saccharomyces ludwigii, and Schizosaccharomyces pombe revealed that most microbes could be adsorbed and selectively desorbed under different conditions. In particular, recovery was improved when L-cysteine was added. A mixture of two bacterial strains adsorbed onto CIS could also be successfully separated by use of specific solutions for each strain. Most of the desorbed cells were alive. Thus, quantitative and selective fractionation of cells is readily achievable by employing chitosan, a known antibacterial material.


Subject(s)
Bacteria/isolation & purification , Chitosan , Fungi/isolation & purification , Adsorption , Bacillus subtilis/isolation & purification , Bacteria/classification , Cell Survival , Escherichia coli/classification , Escherichia coli/isolation & purification , Fungi/classification , Saccharomyces cerevisiae/isolation & purification , Sepharose/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...