Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 47(3): 358-64, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9519740

ABSTRACT

To define the mechanisms involved in the evolution of diabetes in the Zucker diabetic fatty (ZDF) rat, beta-cell mass and replication rates were determined by immunochemistry, point-counting morphometry, and 6-h 5-bromo-2'-deoxyuridine (BrdU) incorporation. The beta-cell mass in 5- to 7-week-old prediabetic ZDF rats (4.3 +/- 0.06 mg) was similar to age-matched insulin-resistant Zucker fatty (ZF) rats (3.7 +/- 0.05 mg) and greater than that in Zucker lean control (ZLC) rats (1.9 +/- 0.3, P < 0.05). At 12 weeks (after diabetes onset), beta-cell mass in the ZDF rats (8.1 +/- 1.7 mg) was significantly lower than the ZF rats (15.7 +/- 1.8 mg). The mass in the ZF rats was significantly greater than in the ZLC rats (4.3 +/- 0.8 mg, P < 0.05). The beta-cell proliferation rate (mean of both time points) was significantly greater in the ZDF rats (0.88 +/- 0.1%) compared with the ZF and ZLC rats (0.53 +/- 0.07%, 0.62 +/- 0.07%, respectively, P < 0.05), yet ZDF rats have a lower beta-cell mass than the ZF rats despite a higher proliferative rate. Morphological evidence of neogenesis and apoptosis is evident in the ZF and ZDF rats. In addition, even at 5-7 weeks a modest defect in insulin secretion per beta-cell unit was found by pancreas perfusion. These studies provide evidence that the expansion of beta-cell mass in response to insulin resistance and insulin secretory defects in diabetic ZDF rats is inadequate. This failure of beta-cell mass expansion in the ZDF rat does not appear to be from a reduction in the rate of beta-cell proliferation or neogenesis, suggesting an increased rate of cell death by apoptosis.


Subject(s)
Apoptosis/physiology , Diabetes Mellitus, Type 2/pathology , Insulin Resistance/physiology , Insulin/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Animals , Cohort Studies , Disease Models, Animal , Dose-Response Relationship, Drug , Glucagon/analysis , Glucose/pharmacology , Glucose Intolerance/etiology , Glucose Tolerance Test , Immunohistochemistry , In Vitro Techniques , Insulin/analysis , Insulin Secretion , Islets of Langerhans/cytology , Male , Pancreatic Polypeptide/analysis , Perfusion , Rats , Rats, Zucker , Somatostatin/analysis , Time Factors
2.
Diabetes ; 46(9): 1434-9, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9287043

ABSTRACT

We examined changes in high- and low-Km glucose phosphorylating activity in pancreatic islet extracts from the prediabetic Zucker diabetic fatty (ZDF) rat between 5-6 weeks and 12 weeks of age (after the onset of diabetes). Comparisons were made between the activity observed in the ZDF rat and that seen in the ZDF lean control (ZLC) rat and the obese nondiabetic Zucker fatty (ZF) rat. At 5-6 weeks of age, insulin resistant ZDF and ZF rats were hyperinsulinemic, compared with the ZLC rat, but had normal plasma glucose levels. Kinetic parameters (Vmax and Km for glucose) of hexokinase (HK) and Km of glucokinase (GCK) did not differ between groups. Islet GCK activity for ZDF and ZF rats was 1.7-fold greater than in ZLC rats (P < 0.02 and P < 0.001, respectively). By 12 weeks of age, hypersecretion of insulin at 5.0 mmol/l glucose was observed in perifused islets from both obese groups relative to the ZLC rat. Islets from ZDF rats failed to increase insulin secretion in response to increased glucose concentration. Group differences in the kinetic parameters for GCK or in the Km values for HK were not significant. Islet HK activity for ZDF and ZF rats was 1.9-fold (P < 0.05) and 1.7-fold (P < 0.05) greater, respectively, than for ZLC rats. Compared with the 5- to 6-week-old animals, HK activity increased 3.1-fold (P < 0.001), 2.5-fold (P < 0.002), and 2.0-fold (P < 0.05) for ZDF, ZF, and ZLC rats, respectively. Differences in GCK activity between 5- to 6- and 12-week-old rats were not significant for any of the groups. We conclude: 1) increased islet glucose phosphorylating activity is present in insulin resistant and hyperinsulinemic ZF and ZDF rats, relative to the ZLC rat; 2) at 12 weeks of age, hyperinsulinemic ZDF and ZF rats demonstrated significant increases in HK activity, compared with lean controls; and 3) deficiency in GCK activity does not explain failure of diabetic ZDF islets to respond to glucose, since differences between diabetic ZDF and nondiabetic ZF rats were not statistically significant. Increases in pancreatic islet phosphorylating activity seem to be important in maintaining basal hyperinsulinemia in insulin-resistant animals, but do not appear to play a role in the progression to glucose intolerance and diabetes.


Subject(s)
Glucokinase/metabolism , Glucose/metabolism , Hexokinase/metabolism , Islets of Langerhans/enzymology , Obesity/enzymology , Age Factors , Animals , Glucokinase/genetics , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Male , Phosphorylation , RNA, Messenger/genetics , Rats , Rats, Mutant Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...