Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(23): 25135-25145, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882110

ABSTRACT

A simple and efficient procedure for synthesizing novel pincer-type tridentate N-heterocyclic carbene bisphenolate ligands is reported. The synthesis of pincer proligands with N,N'-disubstituted imidazoline core, 5 and 6, was carried out via triethylorthoformate-promoted cyclization of either N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)cyclohexanediamine, 3, or N,N'-bis(2-hydroxyphenyl)cyclohexanediamine, 4, in the presence of concentrated hydrochloric acid. Cyclic voltammograms of the ligands revealed ligand-centered redox activity, indicating the noninnocent nature of the ligands. The voltammograms of the ligands exhibit two successive one-electron oxidations and two consecutive one-electron reductions. In contrast to previous reports, the redox-active ligands in this study exhibit one-electron oxidation and reduction processes. All products were thoroughly characterized by using 1H and 13C NMR spectroscopy. The base-promoted deprotonation of the proligands and subsequent reaction with iron(II) and iron(III) chlorides yielded compounds 7 and 8. These compounds are binuclear and tetranuclear iron(III) complexes that do not contain carbene functional groups. Complexes 7 and 8 were characterized by using elemental analysis and single-crystal X-ray crystallography. At low catalyst loadings, both 7 and 8 exhibited high catalytic activity in the transfer hydrogenation of selected aldehydes and ketones.

2.
Angew Chem Int Ed Engl ; 63(17): e202401872, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38400832

ABSTRACT

Luminescence is observed in three novel macropolyhedral nineteen- and eighteen-vertex chalcogenaboranes: Se2B17H17 (1), SeB17H19 (3) and SeB18H20 (4). This led us to the recognition that previously published macropolyhedral heteroborane species might also exhibit luminescence. Thus, the known nineteen- and eighteen-vertex dithiaboranes S2B17H17 (2), n-S2B16H16 (5) and i-S2B16H16 (6) were synthesised and also found to exhibit a range of luminescent properties. These macropolyhedral species are very different from the previously unique fluorescent binary borane B18H22 in terms of their structural architectures, by the presence of borane cluster hetero atoms, and, as in the cases of 5 and 6, that their synthetic origins are not derived simply through the modification of B18H22 itself. They consequently greatly expand the possibilities of finding new luminescent inorganic borane species.

3.
Inorg Chem ; 62(41): 16710-16724, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37788161

ABSTRACT

Derivatization of (NHC)M-Cl (M = Ag, Au) with selected sulfur donors from the family of dialkyldithiophosphates and bis(2-mercapto-1-methylimidazolyl)borate ligands gave a series of heteroleptic mononuclear complexes. In single-crystal X-ray diffraction analysis, Ag(I) complexes adopted a trigonal planar geometry, while Au(I) complexes are near-linear. TD-DFT and hole-electron analyses of the selected complexes gave insight into the electronic features of the metal complexes. In vitro cellular tests were conducted on the human cancerous breast cell line MCF-7 using 2 and 8. The antibacterial activities of complexes 1, 2, 3, 7, 8, and IPr-Ag-Cl were also screened against Gram-positive (Staphylococcus aureus PTCC 1112) and Gram-negative (Escherichia coli PTCC 1330) bacteria. Antityrosinase and hemolytic effects of the selected compounds were also determined.


Subject(s)
Monophenol Monooxygenase , Silver , Humans , Silver/pharmacology , Silver/chemistry , Gold/pharmacology , Gold/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Methane/pharmacology , Methane/chemistry
4.
J Am Chem Soc ; 145(32): 17975-17986, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37532522

ABSTRACT

The chemistry and physics of macropolyhedral B18H22 clusters have attracted significant attention due to the interesting photophysical properties of anti-B18H22 (blue emission, laser properties) and related potential applications. We have focused our attention on the "forgotten" syn-B18H22 isomer, which has received very little attention since its discovery compared to its anti-B18H22 isomer, presumably because numerous studies have reported this isomer as nonluminescent. In our study, we show that in crystalline form, syn-B18H22 exhibits blue fluorescence and becomes phosphorescent when substituted at various positions on the cluster, associated with peculiar microstructural-dependent effects. This work is a combined theoretical and experimental investigation that includes the synthesis, separation, structural characterization, and first elucidation of the photophysical properties of three different monothiol-substituted cluster isomers, [1-HS-syn-B18H21] 1, [3-HS-syn-B18H21] 3, and [4-HS-syn-B18H21] 4, of which isomers 1 and 4 have been proved to exist in two different polymorphic forms. All of these newly substituted macropolyhedral cluster derivatives (1, 3, and 4) have been fully characterized by NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction, IR spectroscopy, and luminescence spectroscopy. This study also presents the first report on the mechanochromic shift in the luminescence of a borane cluster and generally enriches the area of rather rare boron-based luminescent materials. In addition, we present the first results proving that they are useful constituents of carbon-free self-assembled monolayers.

5.
J Biomol Struct Dyn ; : 1-21, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615408

ABSTRACT

A new Pd(II) complex of formula [Pd(en)(2-pyc)]+ (where, en is ethylenediamine and 2-pyc is 2-pyridinecarboxylate anion) and its reported Pt(II) analogue, i.e. [Pt(en)(2-pyc)]+ have been made by an improved synthetic procedure, yielding above 80%. They have been characterized by FT-IR, UV-Vis, 1H NMR, 13C NMR, conductivity and elemental analysis. Single crystal structural determination of [Pt(en)(2-pyc)]+ displayed that the Pt(II) cation in this complex coordinated by 2-pyc and en each as five member chelate resulting in slightly distorted square-planar array. The time-dependent spectroscopic analysis of these compounds in aqueous medium demonstrated their structural stabilities. The cytotoxic activities of Pd(II) and Pt(II) complexes, free 2-pyc and carboplatin (as standard drug) were assayed in-vitro against the HCT-116 and MCF-7 as cancerous and MCF 10 A and CCD-841 as normal cell lines. They showed the IC50 order of: carboplatin > 2-pyc > Pt(II) > Pd(II) and lower activities against non-cancerous cells. CT-DNA binding of the Pd(II), Pt(II) and 2-pyc free ligand were explored individually. In this relation, UV-Vis and fluorescence titrations disclosed quenching of CT-DNA absorption and emissions by the compounds via dynamic mechanism and formation of H-bonds and van der Waals forces between them. The interaction was further validated and verified by viscosity measurements and gel electrophoresis. Partition coefficient determination showed that all three compounds have more lipophilicity than cisplatin. Furthermore, docking analysis and molecular dynamics simulation were done to evaluate the nature of interaction between aforementioned compounds and CT-DNA. The finding results demonstrated that these agents interact with CT-DNA via groove binding and were in agreement with experimental results.Communicated by Ramaswamy H. Sarma.

7.
ACS Omega ; 8(23): 20423-20439, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37332817

ABSTRACT

The role of bridging and terminal ligand electronic and steric properties on the structure and antiproliferative activity of two-coordinated gold(I) complexes was investigated on seven novel binuclear and trinuclear gold(I) complexes synthesized by the reaction of either Au2(dppm)Cl2, Au2(dppe)Cl2, or Au2(dppf)Cl2 with potassium diisopropyldithiophosphate, K[(S-OiPr)2], potassium dicyclohexyldithiophosphate, K[(S-OCy)2], or sodium bis(methimazolyl)borate, Na(S-Mt)2, which afforded air-stable gold(I) complexes. In 1-7, the gold(I) centers adopt a two-coordinated linear geometry and are structurally similar. However, their structural features and antiproliferative properties highly depend upon subtle ligand substituent changes. All complexes were validated by 1H, 13C{1H}, 31P NMR, and IR spectroscopy. The solid-state structures of 1, 2, 3, 6, and 7 were confirmed using single-crystal X-ray diffraction. A density functional theory geometry optimization calculation was used to extract further structural and electronic information. To investigate the possible cytotoxicities of 2, 3, and 7, in vitro cellular tests were carried out on the human cancerous breast cell line MCF-7. 2 and 7 show promising cytotoxicity.

8.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 6): 538-544, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37288464

ABSTRACT

The title Schiff base compounds, C22H26N4O (I) and C18H16FN3O (II), were each synthesized by a single-step condensation reaction. The substituted benzyl-idene ring is inclined to the pyrazole ring mean planes by 22.92 (7)° in I and 12.70 (9)° in II. The phenyl ring of the 4-amino-anti-pyrine unit is inclined to the pyrazole ring mean plane by 54.87 (7)° in I and by 60.44 (8)° in II. In the crystal of I, the mol-ecules are linked by C-H⋯O hydrogen bonds and C-H⋯π inter-actions to form layers lying parallel to (001). In the crystal of II, the mol-ecules are linked by C-H⋯O and C-H⋯F hydrogen bonds and C-H⋯π inter-actions, thereby forming layers lying parallel to (010). Hirshfeld surface analysis was employed to further qu-antify the inter-atomic inter-actions in the crystals of both compounds.

9.
Chem Sci ; 14(6): 1613-1626, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36794193

ABSTRACT

Atomically precise nanomaterials with tunable solid-state luminescence attract global interest. In this work, we present a new class of thermally stable isostructural tetranuclear copper nanoclusters (NCs), shortly Cu4@oCBT, Cu4@mCBT and Cu4@ICBT, protected by nearly isomeric carborane thiols: ortho-carborane-9-thiol, meta-carborane-9-thiol and ortho-carborane 12-iodo 9-thiol, respectively. They have a square planar Cu4 core and a butterfly-shaped Cu4S4 staple, which is appended with four respective carboranes. For Cu4@ICBT, strain generated by the bulky iodine substituents on the carboranes makes the Cu4S4 staple flatter in comparison to other clusters. High-resolution electrospray ionization mass spectrometry (HR ESI-MS) and collision energy-dependent fragmentation, along with other spectroscopic and microscopic studies, confirm their molecular structure. Although none of these clusters show any visible luminescence in solution, bright µs-long phosphorescence is observed in their crystalline forms. The Cu4@oCBT and Cu4@mCBT NCs are green emitting with quantum yields (Φ) of 81 and 59%, respectively, whereas Cu4@ICBT is orange emitting with a Φ of 18%. Density functional theory (DFT) calculations reveal the nature of their respective electronic transitions. The green luminescence of Cu4@oCBT and Cu4@mCBT clusters gets shifted to yellow after mechanical grinding, but it is regenerated after exposure to solvent vapour, whereas the orange emission of Cu4@ICBT is not affected by mechanical grinding. Structurally flattened Cu4@ICBT didn't show mechanoresponsive luminescence in contrast to other clusters, having bent Cu4S4 structures. Cu4@oCBT and Cu4@mCBT are thermally stable up to 400 °C. Cu4@oCBT retained green emission even upon heating to 200 °C under ambient conditions, while Cu4@mCBT changed from green to yellow in the same window. This is the first report on structurally flexible carborane thiol appended Cu4 NCs having stimuli-responsive tunable solid-state phosphorescence.

10.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 140-152, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35411853

ABSTRACT

A single-crystal structure determination of the cubic phase of CsNO3 based on data collected at 439 K up to sinθmax/λ = 0.995000 Å-1, i.e. to an unprecedentedly high-θ value, is reported. The structure has been refined in Pm3m (Z = 1). Analysis of the difference electron-density maps revealed that the most appropriate model is the twelve-orientation model with the Cs, N, O1 and O2 atoms situated on the Wyckoff positions 1a, 6f, 6f and 24l, respectively, rather than the eight-orientation aragonite model with the Cs, N and O atoms situated on the Wyckoff positions 1a, 8g and 24m, respectively. Both models, however, show close similarities if the large anisotropic displacement parameters of the O atoms in the eight-orientation aragonite model are taken into account. The reason for this is shown to lie in the smeared electron density around the positions of the disordered [NO3]- anion.

11.
Acta Crystallogr C Struct Chem ; 77(Pt 2): 68-80, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33536369

ABSTRACT

The conformational flexibilities are studied in two new organotin(IV) complexes, namely, trans-dichloridodimethylbis[N,N',N''-tris(2-chlorobenzyl)phosphoric triamide]tin(IV), [Sn(CH3)2(C21H21Cl3N3OP)2Cl2] or Sn(CH3)2Cl2{OP[NHCH2C6H4(2-Cl)]3}2, (I), and bis(dipropylammonium) tetrachloridodimethylstannate(IV), [(CH3CH2CH2)2NH2]2[Sn(CH3)2Cl4], (II), and their analogous structures from the Cambridge Structural Database (CSD). The conformations are considered based on the N-P=O-Sn torsion angles for (I) and the C-C-C-N, C-C-N-C, C-N-C-C and N-C-C-C torsion angles for the two symmetry-independent [CH3CH2CH2NH2CH2CH2CH3]+ cations in (II), and the ±ac±sp±ac (ac = anticlinal and sp = synperiplanar) and ±ap±ap±ap±ap (ap = antiperiplanar) conformations are observed, respectively. In both structures, the four atoms in the corners of the square-planar segment of the octahedral shape around the Sn atom participate in normal hydrogen-bonding interactions as acceptors, which include two O and two Cl atoms for (I), and four Cl atoms for (II). However, the phosphoric triamide ligands block the environment around the Sn atom and limit the hydrogen-bond pattern to form a supramolecular ribbon assembly, while in the presence of small organic cations in (II), a two-dimensional hydrogen-bonded architecture is achieved. The weak interactions π-π, C-H...π and C-Cl...π in (I), and C-H...Cl in (II) do not change the dimensionality of the hydrogen-bond pattern. The 62 CSD structures analogous to (I), i.e. with an SnOPN3 segment (including 83 entries) fall into four categories of conformations based on the N-P=O-Sn torsion angles. The 132 [(CH3CH2CH2)2NH2]+ cations from 85 CSD structures are classified into seven groups based on the torsion angles noted for (II). Most of the CSD structures adopt the same associated conformations noted for (I) and (II). 15 [Sn(CH3)2Cl4]2- anions extracted from the CSD are compared with the structure of (II).

12.
J Biomol Struct Dyn ; 39(13): 4845-4858, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32579069

ABSTRACT

In this study, five new complexes containing deferiprone (dfp) and N,N-donor ligands [bipyridine (bpy), 1,10-phenanthroline (phen) and ethylenediamine (en)] were synthesized: [Fe(dfp)2(bpy)](PF6) (1), [Fe(dfp)2(phen)](PF6) (2), [Cu2(dfp)2(bpy)2](PF6)2 (3), [Ga(dfp)2(bpy)](PF6) (4), and [Fe(dfp)2(en)](PF6) (5). Characterization of these complexes was carried out through elemental analysis and FT-IR, and single-crystal X-ray crystallography was used to determine their structures. Whilst the polyhedron has a distorted octahedral geometry in 1, 2, 4, and 5, it adopts a distorted square-pyramidal geometry in 3. Interaction of these compounds with human serum albumin (HSA) has been investigated through electronic absorption and fluorescence titration techniques. Emission quenching was performed separately for each complex at three different temperatures and thermodynamic parameters were calculated using binding constants to better understand the power of different binding forces with the HSA. Results demonstrated that compounds interact strongly with the HSA with a static quenching mechanism. Our evaluation of the cytotoxicity of complexes against the breast cancer MCF-7 cell line showed that complex 2 presents a better cytotoxicity than the standard cis-Pt. Finally, using the AutoDock 4.2 program, simulations to analyze the mechanism of complex-HSA interactions and their binding mode were carried out. Results showed that the best binding mode is located in subdomain IB for 1, 2, and 4, in I/II for 3, and in IA/IIA for 5. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Coordination Complexes , Antineoplastic Agents/pharmacology , Binding Sites , Coordination Complexes/pharmacology , DNA/metabolism , Deferiprone , Female , Humans , Ligands , MCF-7 Cells , Protein Binding , Serum Albumin, Human/metabolism , Spectroscopy, Fourier Transform Infrared
13.
Dalton Trans ; 49(44): 15864-15873, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33156307

ABSTRACT

Novel Pd/Co-Ni oxide composites were developed as electrocatalysts for formic acid electro-oxidation as a process that can be utilised in fuel cells and electrochemical sensors. For achieving this goal, the new complex [Co0.14Ni1.86(dipic)2(phen)2(H2O)2]·4H2O (1) was synthesised and used as an inorganic precursor for producing a Co-Ni mixed metal promoter. In the following, palladium nanoparticles were anchored on Co-Ni mixed metal oxides via a reaction of chemical reduction with four different loadings. The electrocatalytic activity of the electrocatalysts was investigated for HCOOH electro-oxidation by electrochemical studies. Compared with single component electrocatalysts, the new electrocatalysts exhibited higher current, improved absorption/desorption of hydrogen, and a higher loading for metal oxides.

14.
Front Chem ; 7: 623, 2019.
Article in English | MEDLINE | ID: mdl-31620422

ABSTRACT

A novel, efficient and environmentally friendly approach has been developed for the synthesis of biologically important bis-heterocyclic oxazepine-quinazolinone derivatives. The structurally interesting compounds of high purity were synthesized by a one-pot three-component reaction of 2-(2-formylphenoxy) acetic acid and 2-aminobenzamide as bifunctional reagents and an isocyanide without using any catalyst, with excellent overall yields.

15.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 750-757, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31166929

ABSTRACT

Two new N-oxide compounds, namely glycinium 2-carboxy-1-(λ1-oxidaneyl)-1λ4-pyridine-6-carboxylate-glycine-water (1/1/1), C2H6NO2+·C7H4NO5-·C2H5NO2·H2O or [(2,6-HpydcO)(HGLY)(GLY)(H2O)], 1, and methyl 6-carboxy-1-(λ1-oxidaneyl)-1λ4-pyridine-2-carboxylate, C8H7NO5 or 2,6-HMepydcO, 2, were prepared and identified by elemental analysis, FT-IR, Raman spectroscopy and single-crystal X-ray diffraction. The X-ray analysis of 1 revealed an ionic compound containing a 2,6-HpydcO- anion, a glycinium cation, a neutral glycine molecule and a water molecule. Compound 2 is a neutral compound with two independent units in its crystal structure. In addition to the hydrogen bonds, the crystal network is stabilized by π-π stacking interactions of the types pyridine-carboxylate and carboxylate-carboxylate. The thermodynamic stability and charge-distribution patterns for isolated molecules of 2,6-H2pydcO and 2,6-HMepydcO, and their two similar derivatives, pyridine-2,6-dicarboxylic acid (2,6-H2pydc) and dimethyl 1-(λ1-oxidaneyl)-1λ4-pyridine-2,6-dicarboxylate (2,6-Me2pydcO), were studied by density functional theory (DFT) and natural bond orbital (NBO) analysis, respectively. The ability of these compounds and their analogues to interact with nine selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS and Top II) was investigated using docking calculations.

16.
Dalton Trans ; 47(32): 10965-10975, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30019723

ABSTRACT

We report a complex study on the crystal structures, electronic properties, reactivity and dynamics of three polyoxometalate compounds (C6NH8)4[H2P2Mo5O23]·5H2O (1), (C2H8N)5[HP2Mo5O23]·(C3H9NO2)0.5·(H2O)1.5 (2) and (C2H8N)3[PMo12O40]·(H2O)0.34 (3). These compounds were synthesized using a solution method and characterized by single-crystal X-ray diffraction. Crystallography confirmed three distinct symmetries P1[combining macron], P21/c and R3[combining macron]c for 1, 2, and 3, respectively, and unit cell constants a = 12.5609(2) Å, b = 13.2470(2) Å, c = 14.0353(2) Å, α = 107.1568(14)°, ß = 101.2854(13)°, γ = 92.1445(14)° for 1, a = 15.8583(6) Å, b = 17.3578(5) Å, c = 14.8499 (4) Å, ß = 114.933(3)° for 2, and a = 16.3798(3) Å, c = 50.2781(5) Å for 3. Semi-empirical calculations applied on the compounds provided information about their reactivity and electronic structures. In this context, several discussions concerning the frontier molecular orbitals, molecular electrostatic potential, thermodynamic properties and local ionization potential were mentioned. We also conducted molecular dynamics analysis in order to elucidate the dynamics of cations and anions and their energy variation.

17.
Acta Crystallogr C Struct Chem ; 71(Pt 9): 824-33, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26322617

ABSTRACT

Hirshfeld surfaces and two-dimensional fingerprint plots are used to analyse the intermolecular interactions in two new phosphorothioic triamide structures, namely N,N',N''-tris(3,4-dimethylphenyl)phosphorothioic triamide acetonitrile hemisolvate, P(S)[NHC6H3-3,4-(CH3)2]3·0.5CH3CN or C24H30N3PS·0.5CH3CN, (I), and N,N',N''-tris(4-methylphenyl)phosphorothioic triamide-3-methylpiperidinium chloride (1/1), P(S)[NHC6H4(4-CH3)]3·[3-CH3-C5H9NH2](+)·Cl(-) or C21H24N3PS·C6H14N(+)·Cl(-), (II). The asymmetric unit of (I) consists of two independent phosphorothioic triamide molecules and one acetonitrile solvent molecule, whereas for (II), the asymmetric unit is composed of three components (molecule, cation and anion). In the structure of (I), the different components are organized into a six-molecule aggregate through N-H···S and N-H···N hydrogen bonds. The components of (II) are aggregated into a two-dimensional array through N-H···S and N-H···Cl hydrogen bonds. Moreover, interesting features of packing arise in this structure due to the presence of a double hydrogen-bond acceptor (the S atom of the phosphorothioic triamide molecule) and of a double hydrogen-bond donor (the N-H unit of the cation). For both (I) and (II), the full fingerprint plot of each component is asymmetric as a consequence of the presence of three fragments. These analyses reveal that H···H interactions [67.7 and 64.3% for the two symmetry-independent phosphorothioic triamide molecules of (I), 30.7% for the acetonitrile solvent of (I), 63.8% in the phosphorothioic triamide molecule of (II) and 62.9% in the 3-methylpiperidinium cation of (II)] outnumber the other contacts for all the components in both structures, except for the chloride anion of (II), which only receives the Cl···H contact. The phosphorothioic triamide molecules of both structures include unsaturated C atoms, thus presenting C···H/H···C interactions: 17.6 and 21% for the two symmetry-independent phosphorothioic triamide molecules in (I), and 22.7% for the phosphorothioic triamide molecule of (II). Furthermore, the N-H···S hydrogen bonds in both (I) and (II), and the N-H...Cl hydrogen bonds in (II), are the most prominent interactions, appearing as large red spots on the Hirshfeld surface maps. The N···H/H···N contacts in structure (I) are considerable, whereas for (II), they give a negligible contribution to the total interactions in the system.

18.
Acta Crystallogr C Struct Chem ; 70(Pt 6): 533-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24898952

ABSTRACT

The title structures NaGdS2 (sodium gadolinium sulfide), NaLuS2 (sodium lutetium sulfide) and NaYS2 (sodium yttrium sulfide) were redetermined in order to improve the structural information available for the family of group 1 and thallium rare earth sulfides, which are isostructural with the rhombohedral α-NaFeO2 structure type. In particular, the present investigation has been directed at the rhombohedral sodium rare earth sulfides. The observed dependence of the fractional coordinate z(S(2-)) on the identity of the rare earth element in the newly determined structures is in agreement with the known structures of the potassium and rubidium analogues. Crystals of NaGdS2 and NaLuS2 display obverse-reverse twinning.

19.
Article in English | MEDLINE | ID: mdl-24109314

ABSTRACT

In the title compound, C24H25ClN2O2, the 2-hy-droxy-benzyl substituents and the 2-chloro-phenyl group occupy the sterically preferred equatorial positions, whereas the methyl group occupies the axial position. The imidazolidine ring adopts an envelope conformation with one of the N atoms adjacent to the methylene group as the flap. The chloro-phenyl substit-uent approaches a nearly perpendicular orientation relative to the mean plane of the imidazolidine ring, making a dihedral angle of 73.44 (12)° and the Cl atom is almost coplanar with the C atom bearing the chloro-phenyl substituent [Cl-C-C-C torsion angle = 1.1 (3)°]. The hy-droxy-benzyl groups make dihedral angles of 71.23 (15) and 69.13 (19)° with the mean plane of the heterocyclic ring. The dihedral angle between the two hy-droxy-benzyl groups is 69.61 (12)°. The mol-ecular structure features two intra-molecular O-H⋯N hydrogen bonds with graph-set motif S(6) between the phenolic hydroxyl groups and N atoms.

20.
Article in English | MEDLINE | ID: mdl-24109373

ABSTRACT

The asymmetric unit in the title compound, C24H26N2O3, comprises two independent mol-ecules (A and B). In molecule A, the central 2-hydroxyphenyl ring is inclined to the mean plane of the major component of the imidazolidine ring by 84.52 (14)°, and by 68.08 (9) and 47.48 (9)° to the outer phenol rings. The later are inclined to one another by 66.76 (9)° and by 78.12 (14) and 80.20 (14)° to the imidazoline ring mean plane. In molecule B, the central 2-hydroxyphenyl ring is inclined to the mean plane of the imidazolidine ring by 73.64 (10)°, and by 75.60 (8) and 38.32 (9)° to the outer phenol rings. The later are inclined to one another by 69.47 (9)° and by 82.60 (10) and 64.26 (10)° to the imidazolidine ring mean plane. In each of the independent mol-ecules, two intra-molecular O-H⋯N hydrogen bond form S(6) ring motifs. In disordered mol-ecule A, the O-H groups of the 2-hy-droxy-benzyl groups are also involved in intra-molecular O-H⋯O hydrogen bonds, with the O atom of the hy-droxy-phenyl group acting as the acceptor. In the crystal, A molecules are linked by pairs of O-H⋯O hydrogen bonds forming inversion dimers. These dimers are linked to the B molecules via O-H⋯O hydrogen bonds forming double-layered slabs lying parallel to the bc plane.

SELECTION OF CITATIONS
SEARCH DETAIL
...