Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1852(7): 1219-29, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25772164

ABSTRACT

Accumulation of misfolded forms of microtubule associated, neuronal protein tau causes neurofibrillary degeneration typical of Alzheimer's disease and other tauopathies. This process is accompanied by elevated cellular stress and concomitant deregulation of heat-shock proteins. We used a transgenic rat model of tauopathy to study involvement of heat shock protein 27 (Hsp27) in the process of neurofibrillary degeneration, its cell type specific expression and correlation with the amount of insoluble tau protein aggregates. The expression of Hsp27-mRNA is more than doubled and levels of Hsp27 protein tripled in aged transgenic animals with tau pathology. The data revealed a strong positive and highly significant correlation between Hsp27-mRNA and amount of sarkosyl insoluble tau. Interestingly, intracellular accumulation of insoluble misfolded tau protein in neurons was associated with overexpression of Hsp27 almost exclusively in reactive astrocytes, not in neurons. The topological dissociation of neuronally expressed pathological tau and the induction of astrocytic Hsp27, GFAP, and Vimentin along with up-regulation of microglia specific markers such as CD18, CD68 and C3 point to cooperation of astrocytes, microglia and neurons in response to intra-neuronal accumulation of insoluble tau. Our data suggest that over expression of Hsp27 represents a part of microglia-mediated astrocytic response mechanism in the process of neurofibrillary degeneration, which is not necessarily associated with neuroprotection and which in contrary may accelerate neurodegeneration in late stage of the disease. This phenomenon should be considered during development of disease modifying strategies for treatment of tauopathies and AD via regulation of activity of Hsp27.


Subject(s)
Astrocytes/metabolism , HSP27 Heat-Shock Proteins/metabolism , Neurons/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Cells, Cultured , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , HSP27 Heat-Shock Proteins/genetics , Humans , Protein Folding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Vimentin/genetics , Vimentin/metabolism , tau Proteins/chemistry
2.
Interdiscip Toxicol ; 7(3): 146-53, 2014 Sep.
Article in English | MEDLINE | ID: mdl-26109892

ABSTRACT

Salvia officinalis, L. (Lamiaceae) is one of the most widespread herbal species used in the area of human health and in the food-processing industry. Salvia and its extracts are known to be a rich source of antioxidants. As shown previously, the crude ethanolic extract of salvia (SE) exerts lower anti-oxidative properties in lard compared to the new salvia food formulations No. 1 (SF1; 32% of SE + 68% of the emulsifier Dimodan S-T) and No. 2 (SF2; 32% of SE + 68% of the emulsifier Topcithin 50). The aim of the present study was to investigate and compare the effects of the SE and its food formulations SF1 and SF2 on the toxicity and/or proliferation of L1210 leukemia cells. We found that SE and both SF1 and SF2 demonstrated different concentration- and time-dependent cytotoxic/antiproliferative cellular effects already within the first 24 h of the treatment. However, SE was nearly 10 times more effective than the new salvia food formulations SF1 and SF2. We investigated partially also the molecular mechanisms lying behind the action of SE, SF1 and SF2 induced apoptosis in our cell model. We found an apparent involvement of the mitochondrial/caspase-dependent pathway in the described processes. Nevertheless, further investigation is needed before salvia extract and its new antioxidant formulations can be included among the potential food antioxidants with protective properties against cancer.

3.
Neurobiol Aging ; 33(7): 1448-56, 2012 Jul.
Article in English | MEDLINE | ID: mdl-21196063

ABSTRACT

Neurofibrillary degeneration induced by misfolded protein tau is considered to be one of the key pathological hallmarks of Alzheimer's disease (AD). In the present study, we have introduced a novel transgenic rat model expressing a human truncated tau that encompasses 3 microtubule binding domains (3R) and a proline-rich region (3R tau151-391). The transgenic rats developed progressive age-dependent neurofibrillary degeneration in the cortical brain areas. Neurofibrillary tangles (NFTs) satisfied several key histological criteria used to identify neurofibrillary degeneration in human Alzheimer's disease including argyrophilia, Congo red birefringence, and Thioflavin S reactivity. Neurofibrillary tangles were also identified with antibodies used to detect pathologic tau in the human brain, including DC11, recognizing an abnormal tau conformation and antibodies that are specific for hyperphosphorylated forms of tau protein. Moreover, neurofibrillary degeneration was characterized by extensive formation of sarkosyl insoluble tau protein complexes consisting of rat endogenous and truncated tau species. Interestingly, the transgenic rats did not show neuronal loss either in the cortex or in the hippocampus. We suggest that novel transgenic rat model for human tauopathy represents a valuable tool in preclinical drug discovery targeting neurofibrillary degeneration of Alzheimer's type.


Subject(s)
Cerebral Cortex/pathology , Disease Models, Animal , Disease Progression , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/pathology , Animals , Female , Humans , Male , Rats , Rats, Inbred SHR , Rats, Transgenic
4.
Photochem Photobiol ; 87(1): 32-44, 2011.
Article in English | MEDLINE | ID: mdl-21073477

ABSTRACT

Novel 7-substituted 6-oxo-6,9-dihydro[1,2,5]selenadiazolo[3,4-h]quinoline (SeQ(1-6)) and 8-substituted 9-oxo-6,9-dihydro[1,2,5]selenadiazolo[3,4-f ]quinoline derivatives (SeQN(1-5)) with R(7), R(8) =H, COOC(2) H(5), COOCH(3), COOH, COCH(3) or CN were synthesized and their spectral characteristics were obtained by UV/Vis spectroscopy. Ultraviolet A photoexcitation of the selenadiazoloquinolones in dimethylsulfoxide or acetonitrile resulted in the formation of paramagnetic species coupled with molecular oxygen activation generating the superoxide radical anion or singlet oxygen, evidenced by electron paramagnetic resonance spectroscopy. The cytotoxic/photocytotoxic impact of selenadiazoloquinolones on murine and human cancer cell lines was demonstrated using the derivative SeQ5 (with R(7)=COCH(3)).


Subject(s)
Quinolones/chemistry , Singlet Oxygen/chemistry , Superoxides/chemistry , Animals , Cell Line, Tumor , Electron Spin Resonance Spectroscopy , Humans , Mice , Spectrophotometry, Ultraviolet , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...