Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174036, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38889824

ABSTRACT

Pharmaceuticals (PhACs) are increasingly detected in aquatic ecosystems, yet their effects on biota remain largely unknown. The environmentally relevant concentrations of many PhACs may not result in individual-level responses, like mortality or growth inhibition, traditional toxicity endpoints. However, this doesn't imply the absence of negative effects on biota. Metabolomics offers a more sensitive approach, detecting responses at molecular and cellular levels and providing mechanistic understanding of adverse effects. We evaluated bioaccumulation and metabolic alterations in a benthic ostracod, Heterocypris incongruens, exposed to a mixture of five PhACs (carbamazepine, tiapride, tolperisone, propranolol and amlodipine) at environmentally relevant concentrations for 7 days using liquid chromatography coupled with mass spectrometry. The selection of PhACs was based, among other factors, on risk quotient values determined using toxicological data available in the literature and concentrations of PhACs quantified in our previous research in the sediments of the Odra River estuary. This represents a novel approach to PhACs selection for metabolomic studies that considers strictly quantitative data. Amlodipine and tolperisone exhibited the highest bioaccumulation. Significant impacts were observed in Alanine, aspartate and glutamate metabolism, Starch and sucrose metabolism, Arginine biosynthesis, Histidine metabolism, Tryptophan metabolism, Glycerophospholipid metabolism, and Glutathione metabolism pathways. Most of the below-individual-level responses were likely nonspecific and related to dysregulation in energy metabolism and oxidative stress response. Additionally, some pharmaceutical-specific responses were also observed. Therefore, untargeted metabolomics can be used to detect metabolic changes resulting from environmentally relevant concentrations of PhACs in aquatic ecosystems and to understand their underlying mechanism.

2.
J Org Chem ; 89(1): 111-123, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38069836

ABSTRACT

The chiral framework based on 11-aminomefloquine has been utilized for the first time to construct bifunctional organocatalysts. These catalysts demonstrate high enantioselectivity in both Michael additions and Friedel-Crafts reactions across a variety of substrates, achieving up to >99% ee. The distinctive feature is the incorporation of a secondary amine group, offering unique tight hydrogen-bonding capabilities in the protonated state, as supported by DFT computation. The diversity of these organocatalysts suggests their broad applicability across multiple reaction classes.

3.
Chemosphere ; 308(Pt 1): 136133, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36041528

ABSTRACT

We present the first comprehensive study on the occurrence of tributyltin (TBT) in the Odra River estuary (SW Baltic Sea) that encompasses both densely populated and urbanized agglomeration Szczecin city, and sparsely populated biosphere reserves "Natura 2000". Relationship between TBT and physicochemical parameters of bottom sediments such as granulometry total organic carbon (TOC), total nitrogen (TN), acid volatile sulfide (AVS), As, and metals: Ba, Cd, Co, Cr, Cu, Fe, Hg, Ni, Mn, Mo, Pb, Sn, and Zn was investigated in 120 samples collected in 2017 and 2018. The highest TBT concentrations were over 3000 ng g-1 (dry weight). They were observed in samples collected in the vicinity of the ship maintenance zones of the Szczecin city. Despite the EU ban on its use since 2003, TBT is still present in the environment. Environmetrics analyses such as correlation, cluster, and principal component analysis of obtained results revealed that the main source of sediments contamination by TBT, metalloids, and metals is likely related to the maritime industry: shipyards, ship maintenance as well as ports and marines. TBT is still present in the bottom sediments because of its emission to the environment with dust and paint chips formed during sandblasting cleaning of ship surfaces. The pollutant is further transported with water current to remote localization in the Szczecin Lagoon. Slow water exchange between the Szczecin Lagoon and the Baltic Sea favors accumulation of pollutants in the lagoon sediments. Therefore, it is necessary to implement environmentally friendly methods into ship maintenance and management of the materials from dredged waterways, harbors, and marinas.


Subject(s)
Mercury , Metalloids , Water Pollutants, Chemical , Cadmium/analysis , Carbon/analysis , Dust/analysis , Environmental Monitoring/methods , Estuaries , Geologic Sediments/analysis , Lead/analysis , Mercury/analysis , Metalloids/analysis , Nitrogen/analysis , Rivers , Sulfides/analysis , Trialkyltin Compounds , Water/analysis , Water Pollutants, Chemical/analysis
4.
Molecules ; 27(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956795

ABSTRACT

Organotin compounds (OTCs) are among the most hazardous substances found in the marine environment and can be determined by either the ISO 23161 method based on extraction with non-polar organic solvents and gas chromatography analysis or by the recently developed QuEChERS method coupled to liquid chromatography-mass spectrometry (LC-MS/MS). To date, the QuEChERS LC/MS and ISO 23161 methods have not been compared in terms of their fit-for-purpose and reliability in the determination of OTCs in bottom sediments. In the case of ISO 23161, due to a large number of interferences gas chromatography-mass spectrometry was not suitable for the determination of OTCs contrary to more selective determination by gas chromatography with an atomic emission detector. Moreover, it has been found that the derivatization of OTCs to volatile compounds, which required prior gas chromatography determination, was strongly affected by the sediments' matrices. As a result, a large amount of reagent was needed for the complete derivatization of the compounds. Contrary to ISO 23161, the QuEChERS LC-MS/MS method did not require the derivatization of OTC and is less prone to interferences. Highly volatile and toxic solvents were not used in the QuEChERS LC-MS/MS method. This makes the method more environmentally friendly according to the principles of green analytical chemistry. QuEChERS LC-MS/MS is suitable for fast and reliable environmental monitoring of OTCs in bottom sediments from the Odra River estuary. However, determination of di- and monobutyltin by the QuEChERS LC-MS/MS method was not possible due to the constraints of the chromatographic system. Hence, further development of this method is needed for monitoring di- and monobutyltin in bottom sediments.


Subject(s)
Organotin Compounds , Rivers , Chromatography, Liquid , Environmental Monitoring/methods , Estuaries , Gas Chromatography-Mass Spectrometry/methods , Organotin Compounds/analysis , Reproducibility of Results , Rivers/chemistry , Solvents/analysis , Tandem Mass Spectrometry
5.
Sci Total Environ ; 828: 154446, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35283119

ABSTRACT

The occurrence of 130 pharmaceutically active compounds (PhACs) in sediments collected from 70 sampling sites in the Odra River estuary (SW Baltic Sea) was investigated. The highest concentration levels of the compounds were found in the vicinity of effluent discharge from two main Szczecin wastewater treatment plants: "Pomorzany" and "Zdroje", and nearby the seaport and shipyard. The highest environmental risks (RQ > 1) were observed for pseudoephedrine (RQ = 14.0), clindamycin (RQ = 7.3), nalidixic acid (RQ = 3.8), carbamazepine (RQ = 1.8), fexofenadine (RQ = 1.4), propranolol (RQ = 1.1), and thiabendazole (RQ = 1.1). RQ for each compound varied depending on the sampling sites. High environmental risk was observed in 30 sampling sites for clindamycin, 22 sampling sites for pseudoephedrine, 19 sampling sites for nalidixic acid, 4 sampling sites for carbamazepine, and 3 sampling sites for fexofenadine. The medium environmental risk (0.1 < RQ < 1) was observed for 16 compounds: amisulpride, amitriptyline, amlodipine, atropine, bisoprolol, chlorpromazine, lincomycin, metoprolol, mirtazapine, moclobemide, ofloxacin, oxazepam, tiapride, tolperisone, verapamil, and xylometazoline. Due to the scarcity of toxicological data related to benthic organisms, only an approximate assessment of the environmental risk of PhACs is possible. Nevertheless, the compounds with medium and high risk should be considered as pollutants of high environmental concern whose occurrence in the environment should remain under close scrutiny.


Subject(s)
Estuaries , Water Pollutants, Chemical , Carbamazepine/analysis , Clindamycin , Environmental Monitoring , Nalidixic Acid , Pharmaceutical Preparations , Pseudoephedrine , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
6.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164267

ABSTRACT

Late-stage modification of drug molecules is a fast method to introduce diversity into the already biologically active scaffold. A notable number of analogs of mefloquine, chloroquine, and hydroxychloroquine have been synthesized, starting from the readily available active pharmaceutical ingredient (API). In the current review, all the modifications sites and reactivity types are summarized and provide insight into the chemistry of these molecules. The approaches include the introduction of simple groups and functionalities. Coupling to other drugs, polymers, or carriers afforded hybrid compounds or conjugates with either easily hydrolyzable or more chemically inert bonds. The utility of some of the compounds was tested in antiprotozoal, antibacterial, and antiproliferative assays, as well as in enantiodifferentiation experiments.


Subject(s)
Antimalarials/chemistry , Hydroxychloroquine/analogs & derivatives , Mefloquine/analogs & derivatives , Quinolines/chemistry , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Chemistry Techniques, Synthetic , Humans , Hydroxychloroquine/chemical synthesis , Hydroxychloroquine/pharmacology , Malaria/drug therapy , Mefloquine/chemical synthesis , Mefloquine/pharmacology , Models, Molecular , Plasmodium/drug effects , Quinolines/chemical synthesis , Quinolines/pharmacology
7.
Materials (Basel) ; 14(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34947204

ABSTRACT

The paper presents a method for checking the geometry of stamped car body parts using a 3D optical measurement system. The analysis focuses on the first forming operation due to the deformation and material flow associated with stall thresholds. An essential element of the analysis is determining the actual gap occurring between the forming surfaces based on the die and punch geometry used in the first stamping operation. The geometry of car body elements at individual production stages was analyzed using an optical laser scanner. The control carried out in this way allowed one to correctly position the tools (punch and die), thus introducing the correction of technological parameters, having a fundamental influence on the specific features of the final product. This type of approach has not been used before to calibrate the technological line and setting of shaping tools. The influence of the manufactured product geometry in intermediate operations on the final geometry features was not investigated.

8.
J Org Chem ; 86(15): 10654-10664, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34314190

ABSTRACT

Novel 1,2-diamines based on the mefloquine scaffold prepared in enantiomerically pure forms resemble 9-amino-Cinchona alkaloids. Most effectively, 11-aminomefloquine with an erythro configuration was obtained by conversion of 11-alcohol into azide and hydrogenation. Alkylation of a secondary amine unit was needed to arrive at diastereomeric threo-11-aminomefloquine and to introduce diversity. Most of the substitution reactions of the hydroxyl group to azido group proceeded with net retention of the configuration and involved actual aziridine or plausible aziridinium ion intermediates. Enantiomerically pure products were obtained by the resolution of either the initial mefloquine or one of the final products. The evaluation of the efficacy of the obtained vicinal diamines in enantioselective transformations proved that erythro-11-aminomefloquine is an effective catalyst in the asymmetric Michael addition of nitromethane to cyclohexanone (up to 96.5:3.5 er) surpassing epi-aminoquinine in terms of selectivity.


Subject(s)
Diamines , Mefloquine , Amines , Molecular Structure , Stereoisomerism
9.
Molecules ; 25(6)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213976

ABSTRACT

In this study, a screening of 26 selected antimicrobials using liquid chromatography coupled to a tandem mass spectrometry method in two Polish wastewater treatment plants and their receiving surface waters was provided. The highest average concentrations of metronidazole (7400 ng/L), ciprofloxacin (4300 ng/L), vancomycin (3200 ng/L), and sulfamethoxazole (3000 ng/L) were observed in influent of WWTP2. Ciprofloxacin and sulfamethoxazole were the most dominant antimicrobials in influent and effluent of both WWTPs. In the sludge samples the highest mean concentrations were found for ciprofloxacin (up to 28 µg/g) and norfloxacin (up to 5.3 µg/g). The removal efficiency of tested antimicrobials was found to be more than 50% for both WWTPs. However, the presence of antimicrobials influenced their concentrations in the receiving waters. The highest antimicrobial resistance risk was estimated in influent of WWTPs for azithromycin, ciprofloxacin, clarithromycin, metronidazole, and trimethoprim and in the sludge samples for the following antimicrobials: azithromycin, ciprofloxacin, clarithromycin, norfloxacin, trimethoprim, ofloxacin, and tetracycline. The high environmental risk for exposure to azithromycin, clarithromycin, and sulfamethoxazole to both cyanobacteria and eukaryotic species in effluents and/or receiving water was noted. Following the obtained results, we suggest extending the watch list of the Water Framework Directive for Union-wide monitoring with sulfamethoxazole.


Subject(s)
Wastewater/analysis , Water Pollutants, Chemical/analysis , Anti-Infective Agents/analysis , Azithromycin/analysis , Chromatography, Liquid , Ciprofloxacin/analysis , Clarithromycin/analysis , Sewage/chemistry , Sulfamethoxazole/analysis , Tandem Mass Spectrometry , Waste Disposal, Fluid/methods
10.
Molecules ; 25(3)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013201

ABSTRACT

A Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction method combined with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for determination of organotin compounds (OTC) has been newly developed. The novel analytical method was validated and the quality of the results was tested by the use of certificate reference material of freshwater sediment BCR 646. The method was applied in determination of OTC concentration in real samples of bottom sediments collected from the Polish part of Odra River Estuary. The samples came from locations with different anthropogenic impact. Additionally, the extraction recovery of OTC and matrix effect on MS signal response was investigated based on those real environmental samples. It was found that organic compounds and anthropogenic contaminations present in bottom sediments may affect extraction efficiency of the organotin compounds (OTC) and change the matrix effect on MS signal response. The highest concentrations of tributyltin were found in bottom sediments collected from locations in vicinity of the Szczecin harbor and shipyards. The presence of triphenyltin above limit of detection (5 ng TPhT/g of sediment) was observed only in two samples and its concentration was several times lower compared to concentration of tributyltin (from 58 ng/g to 5263 ng/g). In spite of the fact that, the application of TBT-based paints on hull of vessel entering EU ports has been banned by European Commission regulation No. 782/2003 since 2008, the OTC compounds are still present in bottom sediment and pose significant threat to the environment. This threat should be taken into account during dredging of waterways and other hydrotechnical works.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Organotin Compounds/analysis , Rivers/chemistry , Trialkyltin Compounds/analysis , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Estuaries , Gas Chromatography-Mass Spectrometry , Poland
SELECTION OF CITATIONS
SEARCH DETAIL
...