Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29904535

ABSTRACT

The ability to communicate is a crucial graduate outcome for science students; however, crowded curricula and large class sizes make it difficult to find time to explicitly teach foundational communication skills. In response to these challenges, we developed an online resource called Communication Learning in Practice for Scientists, or CLIPS. CLIPS provides a multi-point mentoring model that has allowed us to successfully integrate the teaching and learning of a complex set of tacitly-understood skills across multiple scientific disciplines. It also provides a flexible way for industry experts, academics, and students to learn from one another's experiences of, and expertise in, science communication. CLIPS leverages the student focus on assessment; students access CLIPS for pragmatic, detailed, and consistent advice when undertaking assessment tasks. In creating CLIPS, our philosophy was that communication is the core business of any scientific practice, not an add-on after the event. Extensive, repeated use of CLIPS by both students and academics indicates that the resource and its delivery model are considered useful, respected, and impactful for, and by, the intended audiences. We have provided CLIPS to the science education community through www.clips.edu.au.

2.
Article in English | MEDLINE | ID: mdl-22902863

ABSTRACT

We examined the metabolic responses of the South American frog, Ceratophrys ornata, to laboratory-induced estivation. Whole-animal and mass-specific oxygen consumption rates (VO(2)) did not change during fasting or 56days of estivation, despite observing significant decreases in body mass. The maintenance of mass-specific metabolic rate at routine levels during estivation suggests that metabolic rate suppression is not a major response to estivation in this species. There was a significant decline in liver glycogen and a loss of adipose tissue mass during estivation, suggesting that both carbohydrate and lipid pathways are used to fuel metabolism during estivation. The activity of pyruvate dehydrogenase, an important regulator of carbohydrate oxidation, and carnitine palmitoyltransferase and 3-hydroxyacyl-CoA dehydrogenase, regulators of lipid oxidation, showed no significant change in activity in liver, heart, and muscle between estivating and active frogs. There was an increase in plasma osmolality, which is characteristic of estivating animals. Overall, our metabolic analysis of estivation in C. ornata indicates that this species does not employ a dramatic suppression metabolic rate to survive dehydration stress and that both endogenous carbohydrates and lipids are used as metabolic fuels.


Subject(s)
Anura/metabolism , Estivation , Acetyl Coenzyme A/metabolism , Animals , Anura/anatomy & histology , Anura/blood , Anura/physiology , Carbohydrate Metabolism , Carnitine/metabolism , Citrate (si)-Synthase/metabolism , Fatty Acids/metabolism , Hematocrit , Organ Size , Osmolar Concentration , Oxygen/metabolism
3.
J Exp Biol ; 212(Pt 9): 1270-6, 2009 May.
Article in English | MEDLINE | ID: mdl-19376947

ABSTRACT

The armoured catfish, Pterygoplichthys pardalis, is known to be extremely tolerant of environmental hypercarbia (elevated water CO(2) tensions), which occurs in their natural environment. In addition, previous studies have demonstrated that during exposure to hypercarbia, P. pardalis does not exhibit extracellular pH compensation and thus the heart and other organs must continue to function despite a severe extracellular acidosis. We used an in situ perfused heart preparation to determine the effects of an extracellular hypercapnic (elevated CO(2) in the animal) acidosis (1-7.5% CO(2)) on heart function, specifically cardiac output, power output, heart rate and stroke volume. The present study is the first to comprehensively examine cardiac function in an acidosis-tolerant teleost. When compared with control conditions, maximum cardiac performance was unaffected at levels of CO(2) as high as 5%, far exceeding the hypercapnic tolerance of other teleosts. Moreover, P. pardalis exhibited only a moderate decrease (approximately 35%) in cardiac performance when exposed to 7.5% CO(2), and full cardiac performance was restored in six out of seven hearts upon return to control conditions. Myocardial intracellular pH (pH(i)) was protected in situ, as has been found in vivo, and this protection extended to the highest level of CO(2) (7.5%) investigated. Thus, maintained heart function during a hypercapnic acidosis in P. pardalis is probably associated with preferential pH(i) regulation of the heart, but ultimately is not sufficient to prevent loss of cardiac function. Our findings suggest the need for further study to elucidate the mechanisms behind this remarkable cardiac hypercapnic tolerance.


Subject(s)
Carbon Dioxide/pharmacology , Catfishes/physiology , Heart/physiology , Adaptation, Physiological , Animals , Carbon Dioxide/blood , Hydrogen-Ion Concentration , In Vitro Techniques
4.
Trends Ecol Evol ; 19(6): 334-43, 2004 Jun.
Article in English | MEDLINE | ID: mdl-16701280

ABSTRACT

Remote measurement of the physiology, behaviour and energetic status of free-living animals is made possible by a variety of techniques that we refer to collectively as 'biotelemetry'. This set of tools ranges from transmitters that send their signals to receivers up to a few kilometers away to those that send data to orbiting satellites and, more frequently, to devices that log data. They enable researchers to document, for long uninterrupted periods, how undisturbed organisms interact with each other and their environment in real time. In spite of advances enabling the monitoring of many physiological and behavioural variables across a range of taxa of various sizes, these devices have yet to be embraced widely by the ecological community. Our review suggests that this technology has immense potential for research in basic and applied animal ecology. Efforts to incorporate biotelemetry into broader ecological research programs should yield novel information that has been challenging to collect historically from free-ranging animals in their natural environments. Examples of research that would benefit from biotelemetry include the assessment of animal responses to different anthropogenic perturbations and the development of life-time energy budgets.

SELECTION OF CITATIONS
SEARCH DETAIL
...