Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(30): 6668-6674, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37490415

ABSTRACT

Electron paramagnetic resonance spectroscopy (EPR) is mostly used in structural biology in conjunction with pulsed dipolar spectroscopy (PDS) methods to monitor interspin distances in biomacromolecules at cryogenic temperatures both in vitro and in cells. In this context, spectroscopically orthogonal spin labels were shown to increase the information content that can be gained per sample. Here, we exploit the characteristic properties of gadolinium and nitroxide spin labels at physiological temperatures to study side chain dynamics via continuous wave (cw) EPR at X band, surface water dynamics via Overhauser dynamic nuclear polarization at X band and short-range distances via cw EPR at high fields. The presented approaches further increase the accessible information content on biomolecules tagged with orthogonal labels providing insights into molecular interactions and dynamic equilibria that are only revealed under physiological conditions.


Subject(s)
Biology , Spin Labels , Temperature , Electron Spin Resonance Spectroscopy/methods
2.
Biochim Biophys Acta Bioenerg ; 1864(2): 148953, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36572329

ABSTRACT

The multi-subunit membrane protein complex photosystem II (PSII) catalyzes the light-driven oxidation of water and with this the initial step of photosynthetic electron transport in plants, algae, and cyanobacteria. Its biogenesis is coordinated by a network of auxiliary proteins that facilitate the stepwise assembly of individual subunits and cofactors, forming various intermediate complexes until fully functional mature PSII is present at the end of the process. In the current study, we purified PSII complexes from a mutant line of the thermophilic cyanobacterium Thermosynechococcus vestitus BP-1 in which the extrinsic subunit PsbO, characteristic for active PSII, was fused with an N-terminal Twin-Strep-tag. Three distinct PSII complexes were separated by ion-exchange chromatography after the initial affinity purification. Two complexes differ in their oligomeric state (monomeric and dimeric) but share the typical subunit composition of mature PSII. They are characterized by the very high oxygen evolving activity of approx. 6000 µmol O2·(mg Chl·h)-1. Analysis of the third (heterodimeric) PSII complex revealed lower oxygen evolving activity of approx. 3000 µmol O2·(mg Chl·h)-1 and a manganese content of 2.7 (±0.2) per reaction center compared to 3.7 (±0.2) of fully active PSII. Mass spectrometry and time-resolved fluorescence spectroscopy further indicated that PsbO is partially replaced by Psb27 in this PSII fraction, thus implying a role of this complex in PSII repair.


Subject(s)
Cyanobacteria , Photosystem II Protein Complex , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/chemistry , Cyanobacteria/metabolism , Oligopeptides/metabolism , Oxygen/metabolism
3.
J Am Chem Soc ; 143(43): 17875-17890, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34664948

ABSTRACT

Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.


Subject(s)
Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy/standards , Proteins/chemistry , Spin Labels , Benchmarking , Electron Spin Resonance Spectroscopy/methods , Reproducibility of Results
4.
J Phys Chem Lett ; 12(14): 3679-3684, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33829785

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy is an established technique to site-specifically monitor conformational changes of spin-labeled biomolecules. Emerging in-cell EPR approaches aiming to address spin-labeled proteins in their native environment still struggle to reach a broad applicability and to target physiologically relevant protein concentrations. Here, we present a comparative in vitro and in-cell double electron-electron resonance (DEER) study demonstrating that nanomolar protein concentrations are at reach to measure distances up to 4.5 nm between protein sites carrying commercial gadolinium spin labels.


Subject(s)
Electrons , Proteins/analysis , Electron Spin Resonance Spectroscopy , HEK293 Cells , Humans
5.
Phys Chem Chem Phys ; 22(24): 13358-13362, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32478770

ABSTRACT

Label-based functional studies of biomolecules in their native environment require labeling reactions inside living cells. In cell spin labeling using alkyne-azide click chemistry with a Gd3+-DOTAM-azide complex is shown to provide high spin label stability and narrow EPR lines for EPR spectroscopic detection of a spin labeled protein in living cells at ambient temperatures.


Subject(s)
Escherichia coli/chemistry , Gadolinium/chemistry , Green Fluorescent Proteins/analysis , Spin Labels , Acetamides/chemistry , Alkynes/chemistry , Azides/chemistry , Click Chemistry , Electron Spin Resonance Spectroscopy , Escherichia coli/cytology , Heterocyclic Compounds, 1-Ring/chemistry , Molecular Structure
6.
Methods Mol Biol ; 2003: 493-528, 2019.
Article in English | MEDLINE | ID: mdl-31218631

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy of spin-labeled membrane proteins is a valuable biophysical technique to study structural details and conformational transitions of proteins close to their physiological environment, for example, in liposomes, membrane bilayers, and nanodiscs. Unlike in nuclear magnetic resonance (NMR) spectroscopy, having only one or few specific side chains labeled at a time with paramagnetic probes makes the size of the object under investigation irrelevant in terms of technique sensitivity. As a drawback, extensive site-directed mutagenesis is required in order to analyze the properties of the protein under investigation. EPR can provide detailed information on side chain dynamics of large membrane proteins or protein complexes embedded in membranes with an exquisite sensitivity for flexible regions and on water accessibility profiles across the membrane bilayer. Moreover, distances between the two spin-labeled side chains in membrane proteins can be detected with high precision at cryogenic temperatures. The application of EPR to membrane proteins still presents some challenges in terms of sample preparation, sensitivity and data interpretation, thus it is difficult to give ready-to-go methodological recipes. However, new technological developments (arbitrary waveform generators) and new spin labels spectroscopically orthogonal to nitroxides increased the range of applicability from in vitro toward in-cell EPR experiments. This chapter is an updated version of the one published in the first edition of the book and describes the state of the art in the application of nitroxide-based site-directed spin labeling EPR to membrane proteins, addressing new tools such as arbitrary waveform generators and spectroscopically orthogonal labels, such as Gd(III)-based labels. We will present challenges in sample preparation and data analysis for functional and structural membrane protein studies using site-directed spin labeling techniques and give experimental details on EPR techniques providing information on side chain dynamics and water accessibility using nitroxide probes. An updated optimal Q-band DEER setup for nitroxide probes will be described, and its extension to gadolinium-containing samples will be addressed.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Gadolinium/chemistry , Liposomes/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Conformation , Mutagenesis, Site-Directed/methods , Spin Labels , Temperature , Water/chemistry
7.
Nat Commun ; 10(1): 2260, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113958

ABSTRACT

ABC exporters harness the energy of ATP to pump substrates across membranes. Extracellular gate opening and closure are key steps of the transport cycle, but the underlying mechanism is poorly understood. Here, we generated a synthetic single domain antibody (sybody) that recognizes the heterodimeric ABC exporter TM287/288 exclusively in the presence of ATP, which was essential to solve a 3.2 Å crystal structure of the outward-facing transporter. The sybody binds to an extracellular wing and strongly inhibits ATPase activity by shifting the transporter's conformational equilibrium towards the outward-facing state, as shown by double electron-electron resonance (DEER). Mutations that facilitate extracellular gate opening result in a comparable equilibrium shift and strongly reduce ATPase activity and drug transport. Using the sybody as conformational probe, we demonstrate that efficient extracellular gate closure is required to dissociate the NBD dimer after ATP hydrolysis to reset the transporter back to its inward-facing state.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Bacterial Proteins/chemistry , Molecular Dynamics Simulation , AAA Domain/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Electron Spin Resonance Spectroscopy , Mutation , Protein Multimerization , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Thermotoga maritima
8.
J Magn Reson ; 275: 38-45, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27992783

ABSTRACT

Site-directed spin labeling for EPR- and NMR spectroscopy has mainly been achieved exploiting the specific reactivity of cysteines. For proteins with native cysteines or for in vivo applications, an alternative coupling strategy is required. In these cases click chemistry offers major benefits by providing a fast and highly selective, biocompatible reaction between azide and alkyne groups. Here, we establish click chemistry as a tool to target unnatural amino acids in vitro and in vivo using azide- and alkyne-functionalized spin labels. The approach is compatible with a variety of labels including reduction-sensitive nitroxides. Comparing spin labeling efficiencies from the copper-free with the strongly reducing copper(I)-catalyzed azide-alkyne click reaction, we find that the faster kinetics for the catalyzed reaction outrun reduction of the labile nitroxide spin labels and allow quantitative labeling yields within short reaction times. Inter-spin distance measurements demonstrate that the novel side chain is suitable for paramagnetic NMR- or EPR-based conformational studies of macromolecular complexes.


Subject(s)
Click Chemistry/methods , Electron Spin Resonance Spectroscopy/methods , Spin Labels/chemical synthesis , Alkynes/chemistry , Azides/chemistry , Catalysis , Copper/chemistry , Cycloaddition Reaction , Cysteine/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Nitrogen Oxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...