Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Bioelectrochemistry ; 128: 100-108, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30959397

ABSTRACT

The work was aimed at the development of a biosensor array for the simultaneous determination of six solutes (glutamate, glucose, choline, acetylcholine, lactate, and pyruvate) in aqueous solutions. Enzymes selective for these substrates were immobilized on the surface of amperometric platinum disc electrodes and served as bioselective elements of a biosensor array. Direct enzymatic analysis by the developed biosensors provided high sensitivity to the tested substrates (limits of detection were 1-5 µM). The linear ranges of the biosensors were from 0.001-0.01 mM to 0.2-2.5 mM. The influence of solution pH, ionic strength and buffer capacity on the biosensor responses was investigated; the conditions for simultaneous operation of all the bioselective elements were optimized. The absence of any cross-influence of the substrates of enzymatic systems used was shown as well as a high selectivity of the biosensors and the absence of any impact of interfering substances (ascorbic acid, dopamine, cysteine, paracetamol). The developed biosensor array had good response reproducibility and storage stability. The array is suitable for rapid (0.5-1 min) and simple simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate, and pyruvate in aqueous (biological) samples; furthermore, the creation of a single chip with six sensitive elements is possible as well as the addition of other biosensors.


Subject(s)
Acetylcholine/analysis , Biosensing Techniques , Choline/analysis , Electrochemical Techniques/instrumentation , Electrodes , Enzymes, Immobilized/chemistry , Glucose/analysis , Glutamic Acid/analysis , Lactic Acid/analysis , Pyruvic Acid/analysis , Buffers , Hydrogen-Ion Concentration , Limit of Detection , Osmolar Concentration , Reproducibility of Results
2.
Nanoscale Adv ; 1(12): 4560-4577, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-36133111

ABSTRACT

Electrochemical enzyme-based biosensors are one of the largest and commercially successful groups of biosensors. Integration of nanomaterials in the biosensors results in significant improvement of biosensor sensitivity, limit of detection, stability, response rate and other analytical characteristics. Thus, new functional nanomaterials are key components of numerous biosensors. However, due to the great variety of available nanomaterials, they should be carefully selected according to the desired effects. The present review covers the recent applications of various types of nanomaterials in electrochemical enzyme-based biosensors for the detection of small biomolecules, environmental pollutants, food contaminants, and clinical biomarkers. Benefits and limitations of using nanomaterials for analytical purposes are discussed. Furthermore, we highlight specific properties of different nanomaterials, which are relevant to electrochemical biosensors. The review is structured according to the types of nanomaterials. We describe the application of inorganic nanomaterials, such as gold nanoparticles (AuNPs), platinum nanoparticles (PtNPs), silver nanoparticles (AgNPs), and palladium nanoparticles (PdNPs), zeolites, inorganic quantum dots, and organic nanomaterials, such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), carbon and graphene quantum dots, graphene, fullerenes, and calixarenes. Usage of composite nanomaterials is also presented.

3.
Anal Chim Acta ; 1022: 113-123, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-29729731

ABSTRACT

An excess of the excitatory neurotransmitter, glutamate, in the synaptic cleft during hypoxia/ischemia provokes development of neurotoxicity and originates from the reversal of Na+-dependent glutamate transporters located in the plasma membrane of presynaptic brain nerve terminals. Here, we have optimized an electrochemical glutamate biosensor using glutamate oxidase and developed a biosensor-based methodological approach for analysis of rates of tonic, exocytotic and transporter-mediated glutamate release from isolated rat brain nerve terminals (synaptosomes). Changes in the extracellular glutamate concentrations from 11.5 ±â€¯0.9 to 11.7 ±â€¯0.9 µΜ for 6 min reflected a low tonic release of endogenous glutamate from nerve terminals. Depolarization-induced exocytotic release of endogenous glutamate was equal to 7.5 ±â€¯1.0 µΜ and transporter reversal was 8.0 ±â€¯1.0 µΜ for 6 min. The biosensor data correlated well with the results obtained using radiolabelled L-[14C]glutamate, spectrofluorimetric glutamate dehydrogenase and amino acid analyzer assays. The blood plasma glutamate concentration was also tested, and reliability of the biosensor measurements was confirmed by glutamate dehydrogenase assay. Therefore, the biosensor-based approach for accurate monitoring rates of tonic, exocytotic and transporter-mediated release of glutamate in nerve terminals was developed and its adequacy was confirmed by independent analytical methods. The biosensor measurements provided precise data on changes in the concentrations of endogenous glutamate in nerve terminals in response to stimulation. We consider that the glutamate biosensor-based approach can be applied in clinics for neuromonitoring glutamate-related parameters in brain samples, liquids and blood plasma in stroke, brain trauma, therapeutic hypothermia treatment, etc., and also in laboratory work to record glutamate release and uptake kinetics in nerve terminals.


Subject(s)
Biosensing Techniques/methods , Blood Chemical Analysis/methods , Brain/cytology , Glutamic Acid/blood , Glutamic Acid/metabolism , Synaptosomes/metabolism , Animals , Electrochemistry , Exocytosis , Glutamate Dehydrogenase/metabolism , Rats , Rats, Wistar
4.
Nanoscale Res Lett ; 12(1): 260, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28395478

ABSTRACT

In this work, we developed a new amperometric biosensor for glutamate detection using a typical method of glutamate oxidase (GlOx) immobilization via adsorption on silicalite particles. The disc platinum electrode (d = 0.4 mm) was used as the amperometric sensor. The procedure of biosensor preparation was optimized. The main parameters of modifying amperometric transducers with a silicalite layer were determined along with the procedure of GlOx adsorption on this layer. The biosensors based on GlOx adsorbed on silicalite demonstrated high sensitivity to glutamate. The linear range of detection was from 2.5 to 450 µM, and the limit of glutamate detection was 1 µM. It was shown that the proposed biosensors were characterized by good response reproducibility during hours of continuous work and operational stability for several days. The developed biosensors could be applied for determination of glutamate in real samples.

5.
Talanta ; 150: 469-75, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26838432

ABSTRACT

The paper presents a simple and inexpensive reusable biosensor for determination of the concentration of adenosine-5'-triphosphate (ATP) in aqueous samples. The biosensor is based on a conductometric transducer which contains two pairs of gold interdigitated electrodes. An enzyme hexokinase was immobilized onto one pair of electrodes, and bovine serum albumin-onto another pair (thus, a differential mode of measurement was used). Conditions of hexokinase immobilization on the transducer by cross-linking via glutaraldehyde were optimized. Influence of experimental conditions (concentration of magnesium ions, ionic strength and concentration of the working buffer) on the biosensor work was studied. The reproducibility of biosensor responses and operational stability of the biosensor were checked during one week. Dry storage at -18 °C was shown to be the best conditions to store the biosensor. The biosensor was successfully applied for measurements of ATP concentration in pharmaceutical samples. The proposed biosensor may be used in future for determination of ATP and/or glucose in water samples.


Subject(s)
Adenosine Triphosphate/analysis , Biosensing Techniques/methods , Conductometry/methods , Hexokinase/chemistry , Adenosine Triphosphate/chemistry , Animals , Biosensing Techniques/instrumentation , Buffers , Conductometry/instrumentation , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Glutaral/chemistry , Gold/chemistry , Hexokinase/metabolism , Magnesium/chemistry , Osmolar Concentration , Saccharomyces cerevisiae/enzymology , Transducers
6.
Talanta ; 135: 67-74, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25640127

ABSTRACT

Glutamate is the major excitatory neurotransmitter in the central nervous system, which is involved in the main aspects of normal brain functioning. High-affinity Na(+)-dependent glutamate transporters is key proteins, which transport extracellular glutamate to the cytoplasm of nerve cells, thereby preventing continuous activation of glutamate receptors, and thus the development of neurotoxicity. Disturbance in glutamate uptake is involved in the pathogenesis of major neurological disorders. Amperometric biosensors are the most promising and successful among electrochemical biosensors. In this study, we developed (1) amperometric glutamate biosensor, (2) methodological approach for the analysis of glutamate uptake in liquid samples of isolated rat brain nerve terminals (synaptosomes). The basal level of glutamate, the initial velocity of glutamate uptake and time-dependent accumulation of glutamate by synaptosomes were determined using developed glutamate biosensor. Comparative analysis of the data with those obtained by radioactive analysis, spectrofluorimetry and ion exchange chromatography was performed. Therefore, the methodological approach for monitoring of the velocity of glutamate uptake, which takes into consideration the definite level of endogenous glutamate in nerve terminals, was developed using glutamate biosensor.


Subject(s)
Biosensing Techniques , Glutamic Acid/analysis , Synaptosomes/metabolism , Animals , Brain/cytology , Electrodes , Glutamate Dehydrogenase/metabolism , Glutamic Acid/metabolism , Male , NAD/metabolism , Oxidoreductases , Platinum , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...