Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Vet Sci ; 11: 1372203, 2024.
Article in English | MEDLINE | ID: mdl-38988985

ABSTRACT

Porcine circoviruses (PCVs) are widely distributed in swine herds. PCV2, the significant swine pathogen, causes infections characterized by growth and development disorders, skin lesions, and respiratory distress. PCV3 has been circulating worldwide and can be associated with various clinical signs and disease developments. Wild boars are the main reservoir of these pathogens in wildlife and can create an alarming threat to pig farming. In Russia, three PCV2 genotypes (PCV2a, PCV2b, and PCV2d) were identified in pig farms. Additionally, PCV3 was observed in pig herds during the monitoring studies in the country. However, data considering the circulation of PCVs in herds of wild boars in Russia is scant. For this purpose, we performed PCR assays of the samples from 30 wild boars hunted in the Moscow Region of Russia in 2021-2023. The ratios of wild boars positive for PCV2, PCV3, or coinfected were 50, 10, and 13.3%, respectively. Additionally, we sequenced 15 PCV2 and four PCV3 complete genomes and conducted phylogenetic analysis, which divided PCV2 isolates into two groups: PCV2d and PCV2b. The study showed a high infection rate of PCV2 among wild boars, with PCV2d dominance. Simultaneously, PCV3 also circulates among wild boars. The obtained results can provide a basis for the development of preventive measures to support infection transmission risks between farm and wild animals.

2.
J Vet Sci ; 23(6): e92, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36448438

ABSTRACT

BACKGROUND: Feline calicivirus (FCV) is widespread throughout the world. An FCV infection is associated with conjunctivitis, rhinitis, and mouth ulcers that can lead to the animal's death. Because vaccination is not always effective, it is necessary to monitor the infection regularly. OBJECTIVES: This study examined the FCV epizootic situation in the Moscow metropolitan area by conducting a molecular phylogenetic analysis of the virus isolates. METHODS: Samples from 6213 animals were examined by a reverse transcription polymerase chain reaction. For phylogenetic analysis, 12 nucleotide sequences obtained from animal samples were selected. Sequencing was performed using the Sanger method. Phylogenetic analysis was conducted using the Maximum Likelihood method. RESULTS: The FCV genome was detected in 1,596 (25.7%) samples out of 6,213. In 2018, calicivirus was detected in 18.9% of samples, 27.8% in 2019, 21.4% in 2020, and 32.6% in 2021. Phylogenetic analysis of the F ORF2 region and the ORF3 start region led to division into two FCV genogroups. Most of the isolates (8 out of 12) were close to the Chinese strains. On the other hand, there were isolates closely related to European and American strains. The isolates circulating in Moscow were not included in clusters with vaccine strains; their nucleotide similarity varied from 77% to 83%. CONCLUSIONS: This study revealed a high prevalence and genetic diversity of the FCV in Moscow. The epizootic situation remains stably tense because 24 viruses were detected in 25% of animals annually.


Subject(s)
Calicivirus, Feline , Animals , Cats , Calicivirus, Feline/genetics , Moscow/epidemiology , Phylogeny , Genotype , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...