Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Amino Acids ; 54(9): 1295-1310, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35779172

ABSTRACT

Nowadays, the problem of preventing acute heart failure (AHF) in patients with ST-elevation myocardial infarction (STEMI) and preserved left-ventricular ejection fraction (pLVEF) is still not completely resolved, especially in late-presented patients. The purpose of study was: (1) assessment of free plasma amino acid (PAA) alterations in STEMI patients [not receiving reperfusion therapy (RT)], depending on sex and LVEF; (2) analysis of development of late/persistent AHF more than 48 h after admission (pAHF) in STEMI patients with pLVEF depending on PAA levels. This prospective cohort study included 92 STEMI patients (33 women and 59 men), not receiving RT. The free PAA were investigated by ion-exchange liquid-column chromatography. The women had significantly higher PAA levels than men in general cohort and cohort with pLVEF (n = 69). There were associations between female sex and pAHF in general cohort (OR 3.7, p = 0.004) and cohort with pLVEF (OR 11.4, p = 0.0001) by logistic regression. The association between pAHF and glycine level [OR 2.5, p < 0.0001; AUC 0.84, p < 0.0001; 86.7% sensitivity and 77.8% specificity for > 2.6 mg/dL] was revealed in cohort with pLVEF (including female and male). Glycine remained a predictor of pAHF with pLVEF by multivariable logistic regression adjusting for comorbidities, demographic and clinical variables. Higher rate of pAHF in female than in male STEMI patients with pLVEF is associated with higher plasma glycine in women. The glycine level may be genetically determinated by female sex. The plasma glycine > 2.6 mg/dL is a predictor of pAHF in STEMI with pLVEF (including female and male).


Subject(s)
Heart Failure , ST Elevation Myocardial Infarction , Amino Acids , Female , Glycine , Humans , Male , Prospective Studies , ST Elevation Myocardial Infarction/therapy , Stroke Volume , Ventricular Function, Left
2.
Int J Biochem Cell Biol ; 119: 105665, 2020 02.
Article in English | MEDLINE | ID: mdl-31821883

ABSTRACT

Vitamin D3 is among the major neurosteroids whose role in developing and adult brain is intensively studied now. Its active form 1,25(OH)2D3 regulates the expression and functioning of a range of brain-specific proteins, which orchestrate the neurotransmitter turnover, neurogenesis and neuroplasticity. Despite numerous studies of the vitamin D role in normal and pathological brain function, there is little evidence on the mechanisms of alterations in excitatory and inhibitory neurotransmission under vitamin D deficiency (VDD). Using the animal model we characterized the dysfunction of excitatory and inhibitory neurotransmission under alimentary VDD. The shift between unstimulated and evoked GABA release under VDD was largely reversed after treatment of VDD, whereas the impairments in glutamatergic system were only partially recovered after 1-month vitamin D3 supplementation. The increase of the external glutamate level and unstimulated GABA release in brain nerve terminals was associated with intensified ROS production and higher [Ca2+]i in presynapse. The negative allosteric modulation of presynaptic mGlu7 receptors significantly enhanced exocytotic GABA release, which was decreased under VDD, thereby suggesting the neuroprotective effect of such modulation of inhibitory neurotransmission. Synaptic plasma membranes and cytosolic proteins contribute to the decreased stimulated release of neurotransmitter, by being the crucial components, whose functional state is impaired under VDD. The critical changes with synaptic vesicles occurred at the docking step of the process, whereas malfunctioning of synaptic cytosolic proteins impacted the fusion event foremost. The decreased amplitude of exocytosis was inherent for non-excitable cells as well, as evidenced by lower platelet degranulation. Our data suggest the presynaptic dysfunction and proinflammatory shift as the early events in the pathogenesis of VDD-associated disorders and provide evidences for the neuroprotective role of vitamin D3.


Subject(s)
Brain/physiopathology , Cholecalciferol/deficiency , Inflammation/physiopathology , Nervous System Diseases/metabolism , Synapses/pathology , Vitamin D Deficiency/physiopathology , Animals , Brain/metabolism , Brain/pathology , Cholecalciferol/metabolism , Cholecalciferol/pharmacology , Cholesterol/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Membrane Fusion , Mice, Inbred C57BL , Nervous System Diseases/physiopathology , Neural Pathways , Phospholipids/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Receptors, Metabotropic Glutamate/metabolism , Synapses/metabolism , Vitamin D Deficiency/metabolism , Vitamins/pharmacology , gamma-Aminobutyric Acid/metabolism
3.
Neurochem Res ; 41(10): 2526-2537, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27255598

ABSTRACT

Diabetic retinopathy (DR) is a multifactorial disease characterized by reactive gliosis and disbalance of angiogenesis regulators, contributing to endothelial dysfunction and microvascular complications. This study was organized to elucidate whether poly(ADP-ribose) polymerase-1 (PARP-1) inhibition could attenuate diabetes-induced damage to macroglia and correct angiogenic disbalance in diabetic rat retina. After 8 weeks of streptozotocin (STZ)-induced diabetes, Wistar male rats were treated with PARP-1 inhibitors, nicotinamide (NAm) or 3-aminobenzamide (3-AB) (100 and 30 mg/kg/daily i.p., respectively), for 14 days. After the 10-weeks experiment period, retinas were undergone an immunohistochemical staining for glial fibrillary acidic protein (GFAP), while western blots were performed to evaluate effects of PAPR-1 inhibitors on the levels of PARP-1, poly(ADP-ribosyl)ated proteins (PARs), GFAP, and angiostatin isoforms. Diabetes induced significant up-regulation and activation of retinal PARP-1, reactive gliosis development, and GFAP overexpression compared to non-diabetic control. Moreover, extensive fragmentation of both PARP-1 and GFAP (hallmarks of apoptosis and macroglia reactivation, respectively) in diabetic retina was also observed. Levels of angiostatin isoforms were dramatically decreased in diabetic retina, sustaining aberrant pro-angiogenic condition. Both NAm and 3-AB markedly attenuated damage to macroglia, evidenced by down-regulation of PARP-1, PARs and total GFAP compared to diabetic non-treated group. PARP-1-inhibitory therapy prevented formation of PARP-1 and GFAP cleavage-derived products. In retinas of anti-PARP-treated diabetic animals, partial restoration of angiostatin's levels was shown. Therefore, PARP-1 inhibitors counteract diabetes-induced injuries and manifest retinoprotective effects, including attenuation of reactive gliosis and improvement of angiogenic status, thus, such agents could be considered as promising candidates for DR management.


Subject(s)
Angiostatins/metabolism , Diabetes Mellitus, Experimental/metabolism , Gliosis/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Retina/drug effects , Animals , Down-Regulation/drug effects , Male , Rats, Wistar , Retina/metabolism
4.
Int J Mol Med ; 28(4): 629-35, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21617845

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) activation has been implicated in the pathogenesis of diabetic complications, including nephropathy and peripheral neuropathy. This study aimed at evaluating the manifestations of both complications in diabetic Akita mice, a model of Type 1 (insulin-dependent) diabetes, and their amenability to treatment with the potent PARP inhibitor, 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de] anthracen-3-one (GPI-15427). Male non-diabetic C57Bl6/J and diabetic C57Bl/6-Ins2Akita/J (Akita) mice were maintained with or without treatment with GPI-15427, 30 mg/kg/day, for 4 weeks starting from 16 weeks of age. Sixteen week-old Akita mice displayed sensory nerve conduction velocity (SNCV) deficit, whereas the motor nerve conduction velocity (MNCV) tended to decrease, but the difference with controls did not achieve statistical significance. They also developed thermal and mechanical hypoalgesia and tactile allodynia. SNCV deficit, mechanical hypoalgesia, and tactile allodynia progressed with age whereas the severity of thermal hypoalgesia was similar in 16- and 20-week-old Akita mice. PARP inhibition alleviated, although it did not completely reverse, SNCV deficit, thermal and mechanical hypoalgesia and tactile allodynia. Sixteen-week-old Akita mice displayed MNCV deficit (41.3±2.5 vs. 51.0±1.2 m/sec in non-diabetic controls, P<0.01), axonal atrophy of myelinated fibers, kidney hypertrophy, and albuminuria. MNCV slowing, axonal atrophy, and kidney hypertrophy, but not albuminuria, were less severe in GPI-15427-treated age-matched Akita mice. Neuroprotective and nephroprotective effects of PARP inhibition were not due to alleviation of diabetic hyperglycemia, or peripheral nerve p38 mitogen-activated protein kinase activation. GPI-15427 did not affect any variables in control mice. In conclusion, the findings support an important role for PARP activation in diabetic peripheral neuropathy and kidney hypertrophy associated with Type 1 diabetes, and provide rationale for development and further studies of PARP inhibitors, for the prevention and treatment of these complications.


Subject(s)
Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/enzymology , Kidney Diseases/drug therapy , Organic Chemicals/therapeutic use , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/enzymology , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/metabolism , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Kidney Diseases/enzymology , Male , Mice
5.
Exp Neurol ; 230(1): 106-13, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21515260

ABSTRACT

With the consideration of the multifactorial etiology of diabetic peripheral neuropathy, an ideal drug or drug combination should target at least several key pathogenetic mechanisms. The flavonoid baicalein (5,6,7-trihydroxyflavone) has been reported to counteract sorbitol accumulation, activation of 12/15-lipoxygenase, oxidative-nitrosative stress, inflammation, and impaired signaling in models of chronic disease. This study evaluated baicalein on diabetic peripheral neuropathy. Control and streptozotocin-diabetic C57Bl6/J mice were maintained with or without baicalein treatment (30 mg kg(-1) d(-1), i.p., for 4 weeks after 12 weeks without treatment). Neuropathy was evaluated by sciatic motor and hind-limb digital sensory nerve conduction velocities, thermal algesia (Hargreaves test), tactile response threshold (flexible von Frey filament test), and intraepidermal nerve fiber density (fluorescent immunohistochemistry with confocal microscopy). Sciatic nerve and spinal cord 12/15-lipoxygenase and total and phosphorylated p38 mitogen-activated protein kinase expression and nitrated protein levels were evaluated by Western blot analysis, 12(S)hydroxyeicosatetraenoic acid concentration (a measure of 12/15-lipoxygenase activity) by ELISA, and glucose and sorbitol pathway intermediate concentrations by enzymatic spectrofluorometric assays. Baicalein did not affect diabetic hyperglycemia, and alleviated nerve conduction deficit and small sensory nerve fiber dysfunction, but not intraepidermal nerve fiber loss. It counteracted diabetes-associated p38 mitogen-activated protein kinase phosphorylation, oxidative-nitrosative stress, and 12/15-lipoxygenase overexpression and activation, but not glucose or sorbitol pathway intermediate accumulation. In conclusion, baicalein targets several mechanisms implicated in diabetic peripheral neuropathy. The findings provide rationale for studying hydroxyflavones with an improved pharmacological profile as potential treatments for diabetic neuropathy and other diabetic complications.


Subject(s)
Antioxidants/therapeutic use , Diabetic Neuropathies/drug therapy , Flavanones/therapeutic use , Oxidative Stress/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/etiology , Diabetic Neuropathies/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Hyperalgesia/drug therapy , Mice , Mice, Inbred C57BL , Neural Conduction/drug effects , Oligonucleotides, Antisense/therapeutic use , Reaction Time/drug effects , Receptors, Eicosanoid/metabolism , Sciatic Nerve/metabolism , Spinal Cord/metabolism , Statistics, Nonparametric , Tyrosine/analogs & derivatives , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...