Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38813981

ABSTRACT

The search for relevant molecular targets is one of the main tasks of modern tumor chemotherapy. To successfully achieve this, it is necessary to have the most complete understanding of the functioning of a transcriptional apparatus of the cell, particularly related to proliferation. The p53 protein plays an important role in regulating processes such as apoptosis, repair, and cell division, and the loss of its functionality often accompanies various types of tumors and contributes to the development of chemoresistance. Additionally, the proliferative activity of tumor cells is closely related to the metabolism of transition metals. For example, the metallochaperone Atox1 - a copper transporter protein - acts as a transcription activator for cyclin D1, promoting progression through the G1/S phase of the cell cycle. On the other hand, p53 suppresses cyclin D1 at the transcriptional level, thereby these proteins have divergent effects on cell cycle progression. However, the contribution of the interaction between these proteins to cell survival is poorly understood. This work demonstrates that not only exists a positive feedback loop between Atox1 and cyclin D1 but also that the activity of this loop depends on the status of the TP53 gene. Upon inactivation of TP53 in A549 and HepG2 cell lines, the expression of ATOX1 and CCND1 genes is enhanced, and their suppression in these cells leads to pronounced apoptosis. This fundamental observation may be useful in selecting more precise interventions for combined therapy of p53-negative tumors.


Subject(s)
Cell Survival , Copper Transport Proteins , Cyclin D1 , Tumor Suppressor Protein p53 , Humans , Cyclin D1/metabolism , Cyclin D1/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cell Survival/drug effects , Hep G2 Cells , Copper Transport Proteins/metabolism , Copper Transport Proteins/genetics , A549 Cells , Gene Expression Regulation, Neoplastic , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Cell Proliferation , Apoptosis , Metallochaperones/metabolism , Metallochaperones/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics
2.
RSC Adv ; 11(62): 39169-39176, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492461

ABSTRACT

The zeolitic imidazolate framework ZIF-8 (Zn(mim)2, mim = 2-methylimidazolate) has recently been proposed as a drug delivery platform for anticancer therapy based on its capability of decomposing in acidic media. The concept presumes a targeted release of encapsulated drug molecules in the vicinity of tumor tissues that typically produce secretions with elevated acidity. Due to challenges of in vivo and in vitro examination, many studies have addressed the kinetics of ZIF-8 decomposition and subsequent drug release in phosphate buffered saline (PBS) with adjusted acidity. However, the presence of hydrogen phosphate anions [HPO4]2- in PBS may also affect the stability of ZIF-8. As yet, no separate analysis has been performed comparing the dissolving capabilities of PBS and various acidification agents used for regulating pH. Here, we provide a systematic study addressing the effects of phosphate anions with and without lactic acid on the degradation rate of ZIF-8 microcrystals. Lactic acid has been chosen as an experimental acidification agent, since it is particularly secreted by tumor cells. Interestingly, the effect of a lactic acid solution with pH 5.0 on ZIF-8 degradation is shown to be weaker compared to a PBS solution with pH 7.4. However, as an additive, lactic acid is able to enhance the decomposition efficacy of other solutions by 10 to 40 percent at the initial stage, depending on the presence of other ions. Additionally, we report mild toxicity of ZIF-8 and its decomposition products, as examined on HDF and A549 cell lines.

4.
J Mater Chem B ; 7(43): 6810-6821, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31608920

ABSTRACT

Drug delivery systems based on the zeolitic imidazolate framework ZIF-8 have recently attracted viable research interest owing to their capability of decomposing in acidic media and thus performing targeted drug delivery. In vivo realization of this mechanism faces a challenge of relatively slow decomposition rates, even at elevated acidic conditions that are barely achievable in diseased tissues. In this study we propose to combine drug delivery nanocomposites with a semiconductor photocatalytic agent that would be capable of inducing a local pH gradient in response to external electromagnetic radiation. In order to test this principle, a model drug-releasing nanocomposite comprising photocatalytic titania nanotubes, ZIF-8, and the antitumor drug doxorubicin has been investigated. This system was demonstrated to release the drug in a quantity sufficient for effectively suppressing IMR-32 neuroblastoma cells that were used as a model diseased tissue. With locally applied UV irradiation, this result was achieved within 40 minutes, which is a relatively short time compared to the release duration in systems without photocatalyst, typically taking from several hours to several days.


Subject(s)
Drug Delivery Systems/methods , Titanium/chemistry , Zeolites/chemistry , Drug Liberation
5.
RSC Adv ; 9(62): 35998-36004, 2019 11 04.
Article in English | MEDLINE | ID: mdl-35540624

ABSTRACT

In this study we address a novel design of a planar memristor and investigate its biocompatibility. An experimental prototype of the proposed memristor assembly has been manufactured using a hybrid nanofabrication method, combining sputtering of electrodes, patterning the insulating trenches, and filling them with a memristive substance. To pattern the insulating trenches, we have examined two nanofabrication techniques employing either a focused ion beam or a cantilever tip of an atomic force microscope. Inkjet printing has been used to fill the trenches with the functional titania ink. The experimental prototypes have qualitatively demonstrated memristive current-voltage behavior, as well as high biocompatibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...