Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Acta Histochem ; 122(2): 151471, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31784234

ABSTRACT

The airways and lungs of vertebrates are an entrance way for several microbial pathogens. Cetaceans present an upper and lower respiratory anatomy that allows the rapid flow of large air volumes, which may lead to high susceptibility to respiratory infections. Mortality and stranding rate of Cetaceans increased dramatically, so wide the knowledge about the immune system and specific antibodies identifying immune cells populations, is of fundamental importance to monitor and document cetacean health. The aim of this study was to identify the localization of dendritic cells marked by Langerin/CD207 in airways, lungs and associated lymph nodes, of the striped dolphin Stenella coeruleoalba. Samples of trachea, bronchi, lungs and lung-associated lymph nodes were obtained from a stranded adult male of Stenella coeruleoalba. Our results showed abundant lymphoid aggregates (LAs) in the lung of S. ceruleoalba. Langerhans-like dendritic cells were well distributed along the epithelium and interstitium of respiratory tract and in associated lymph nodes. The present study deepens the knowledge about the cetacean's immune system and report about the exploitability of a commercial antibody (Langerin/CD207) for cetacean species.


Subject(s)
Lung/metabolism , Lymph Nodes/metabolism , Lymphocytes/metabolism , Respiratory System/metabolism , Animals , Cetacea/metabolism , Dolphins , Male , Stenella/metabolism
2.
Fish Shellfish Immunol ; 74: 380-385, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29337248

ABSTRACT

Giant Mudskipper, Periophthalmodon schlosseri (Pallas, 1770), is euryhaline, amphibious, and air-breathing fish. These fishes live in close association to mangrove forests and often spend over 90% of time out of water, in adjacent mudflats. They have developed morphological and physiological adaptations to satisfy their unique lifestyles. The skin is the primary interface between the body and the environment, and has a central role in host defence. The initiation of immune responses to antigens in the vertebrate skin has often been attributed to epidermal Langerhans'cells (LC) that are dendritic cells (DC), antigen-presenting cells (APC) which reside in the epidermis. Dendritic cells have been characterized morphologically and functionally in the teleost fish tissues such as rainbow trout, salmonids, medaka, African catfish and zebrafish. However, there is no evidence of the presence of DCs and their role in mudskippers immunity. The aim of this preliminary study was to characterize, through use of specific antibodies: Toll-like receptor 2, S100, serotonin (5-HT), and Vesicular acetylcholine transporter VAChT, a specific DC-like subpopulation in Pn. schlosseri's epidermis.


Subject(s)
Fish Proteins/metabolism , Langerhans Cells/chemistry , Perciformes/physiology , Animals , Immunohistochemistry/veterinary , S100 Proteins/metabolism , Serotonin/metabolism , Toll-Like Receptor 2/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism
3.
Microsc Res Tech ; 80(9): 1018-1027, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28543786

ABSTRACT

Serotonin [5-hydroxytryptamine (5-HT)] is an important neuromodulator involved in a wide range of physiological functions. The effects of serotonin are mediated by an extended family of receptors coupled to multiple heterotrimeric G-proteins, associated with cellular membrane. G proteins connect receptors to effectors and thus trigger intracellular signaling pathways. These cellular processes several regulate systemic functions such as embryonic development, gonadal development, learning and memory, and organismal homeostasis. Generally, elasmobranch fish dwell a hypersaline environment and utilize a specialized extrarenal salt secreting organ, the rectal gland, to face ionic homeostasis. In this study in addition to the morphological, histochemical and immunohistochemical description of the Scyliorhinus canicula rectal gland, for the first time, the presence of serotonin (5-HT), and distribution of different types of G protein alpha subunits (Gα o, Gα q/11, and Gα s/olf) has been investigated in the rectal gland epithelium by confocal immunofluorescence techniques. Colocalization G proteins and 5-HT in the secretory epithelium of the gland suggests serotonin acts as a hormone and involves G proteins in an autocrine-paracrine control of rectal gland homeostasis.


Subject(s)
GTP-Binding Protein alpha Subunits/analysis , Salt Gland , Serotonin/analysis , Sharks/metabolism , Animals , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/metabolism , Immunohistochemistry , Salt Gland/chemistry , Salt Gland/cytology , Salt Gland/metabolism , Serotonin/chemistry , Serotonin/metabolism
4.
Fish Shellfish Immunol ; 59: 250-255, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27818343

ABSTRACT

Toll-like receptors (TLRs) are a group of pattern recognition molecules that play a crucial role in innate immunity. The structural conservation of the archaic TLR system suggests that the regulation of the immune response might be similar in fish and mammals. Several TLRs (TLR-1, -2, and -4) are expressed by activated macrophages, "foam cells" in human atherosclerotic lesions. To date, 20 different TLRs were identified in more than a dozen different fish species. In this study we found that feeding goldfish, Carrassius auratus, a high-cholesterol diet (HCD) resulted macrophage foam cell formation in the intestinal tissues. The expression of TLR2 has been found in foam cells and in the cytoplasm of enterocytes, however the staining was more intense at the apical surface of polarized intestinal epithelial cells and in the lamina propria. In the intestinal epithelial cells and in the lamina propria cells of the control fish the TLR2 was expressed at low levels. The intestinal epithelium is directly involved in the mucosal immune response through its expression of proinflammatory genes, release of inflammatory cytokines, and recruitment of inflammatory cells.


Subject(s)
Atherosclerosis/genetics , Cholesterol, Dietary/pharmacology , Immunity, Innate/drug effects , Toll-Like Receptor 2/genetics , Animals , Atherosclerosis/immunology , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/immunology , Female , Goldfish , Humans , Intestinal Mucosa/immunology , Macrophages/drug effects , Macrophages/immunology , Male , Toll-Like Receptor 2/metabolism
5.
Tissue Cell ; 46(2): 113-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24485769

ABSTRACT

The skin is the primary interface between the body and the environment, and has a central role in host defence. In the epidermis, Langerhans' cells form an interconnecting network of dendritic cells, that play a central role within inflammatory and immune responses of terrestrial and aquatic mammals, but few studies aimed at their characterization have been carried out in cetaceans, so far. Toll-like receptors are crucial players in the innate immune response to microbial invaders. These receptors are expressed on immune cells, such as monocytes, macrophages, dendritic cells, and granulocytes. The aim of this preliminary study was to describe the expression of Toll-like receptor 2 in a stranded striped dolphin (Stenella coeruleoalba) skin. Immunoreactive cells were predominantly found within the stratified squamous epithelium. Other Toll-like receptor 2 positive cells of varying morphology, were found, and may help to increase the knowledge on the interaction occurring between dolphins and the environment in which they live at their most crucial interface: the skin.


Subject(s)
Langerhans Cells/metabolism , Skin/metabolism , Stenella/metabolism , Toll-Like Receptor 2/metabolism , Animals , Immunohistochemistry , Langerhans Cells/cytology , Skin/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...