Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 11: 493, 2020.
Article in English | MEDLINE | ID: mdl-32582012

ABSTRACT

Trans-spinal direct current stimulation (tsDCS) provides a non-invasive, clinically viable approach to potentially restore physiological neuromuscular function after neurological impairment, e.g., spinal cord injury (SCI). Use of tsDCS has been hampered by the inability of delivering stimulation patterns based on the activity of neural targets responsible to motor function, i.e., α-motor neurons (α-MNs). State of the art modeling and experimental techniques do not provide information about how individual α-MNs respond to electrical fields. This is a major element hindering the development of neuro-modulative technologies highly tailored to an individual patient. For the first time, we propose the use of a signal-based approach to infer tsDCS effects on large α-MNs pools in four incomplete SCI individuals. We employ leg muscles spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-MNs discharges across multiple lumbosacral segments during isometric plantar flexion sub-maximal contractions. This is done before, immediately after and 30 min after sub-threshold cathodal stimulation. We deliver sham tsDCS as a control measure. First, we propose a new algorithm for removing compromised information from decomposed α-MNs spike trains, thereby enabling robust decomposition and frequency-domain analysis. Second, we propose the analysis of α-MNs spike trains coherence (i.e., frequency-domain) as an indicator of spinal response to tsDCS. Results showed that α-MNs spike trains coherence analysis sensibly varied across stimulation phases. Coherence analyses results suggested that the common synaptic input to α-MNs pools decreased immediately after cathodal tsDCS with a persistent effect after 30 min. Our proposed non-invasive decoding of individual α-MNs behavior may open up new avenues for the design of real-time closed-loop control applications including both transcutaneous and epidural spinal electrical stimulation where stimulation parameters are adjusted on-the-fly.

2.
Front Neurosci ; 12: 151, 2018.
Article in English | MEDLINE | ID: mdl-29643759

ABSTRACT

Trans-spinal direct current stimulation (tsDCS) is an electro-modulatory tool with possible application in the rehabilitation of spinal cord injury. TsDCS generates a small electric field, aiming to induce lasting, functional neuromodulation in the targeted neuronal networks. Earlier studies have shown significant modulatory effects after application of lumbar tsDCS. However, for clinical application, a better understanding of application specific factors is required. Our goal was to investigate the effect of different electrode configurations using lumbar spinal tsDCS on spinal excitability. We applied tsDCS (2.5 mA, 15 min) in 10 healthy subjects with three different electrode configurations: (1) Anode and cathode placed over vertebra T11, and the posterior left shoulder respectively (LSC-S) (one polarity), and (2) Both electrodes placed in equal distance (ED) (7 cm) above and below vertebra T11, investigated for two polarities (ED-Anodal/Cathodal). The soleus H-Reflex is measured before, during and after tsDCS in either electrode configuration or a sham condition. To account for genetic predispositions in response to direct current stimulation, subject BDNF genotype was assessed. Stimulation in configuration ED-Cathodal induced an amplitude reduction of the H-reflex, 30 min after tsDCS with respect to baseline, whereas none of the other configurations led to significant post intervention effects. BDNF genotype did not correlate with post intervention effects. Furthermore, we failed to replicate effects shown by a previous study, which highlights the need for a better understanding of methodological and subject specific influences on tsDCS outcome. The H-reflex depression after tsDCS (Config. ED-Cathodal) provides new insights and may foster our understanding of the working mechanism of tsDCS.

3.
Article in English | MEDLINE | ID: mdl-23365898

ABSTRACT

Stroke often has a disabling effect on the ability to use the hand in a functional manner. Accurate finger and thumb positioning is necessary for many activities of daily living. In the current study, the feasibility of novel FES based approaches for positioning the thumb and fingers for grasp and release of differently sized objects is evaluated. Assistance based on these approaches may be used in rehabilitation of grasp and release after stroke. A model predictive controller (MPC) is compared with a proportional (P) feedback controller. Both methods are compared on their performance in tracking reference trajectories and in the capability of grasping, holding and releasing objects. Both methods are able to selectively activate the fingers such that differently sized objects, selected from the Action Research Arm test, can be grasped. The MPC method is easier to use in practice, as this method is based on a single identification of a model of the biological system. The P-controller has more parameters which need to be set correctly, and therefore needs more time to initialise. The current results are very promising. Evaluation in patients will be done to explore the possibilities to apply these methods in rehabilitation of grasp and release after stroke.


Subject(s)
Electric Stimulation Therapy , Hand Strength , Models, Biological , Paresis , Stroke , Thumb/physiopathology , Adult , Electric Stimulation Therapy/instrumentation , Electric Stimulation Therapy/methods , Humans , Male , Paresis/etiology , Paresis/physiopathology , Paresis/rehabilitation , Paresis/therapy , Stroke/complications , Stroke/physiopathology , Stroke Rehabilitation
SELECTION OF CITATIONS
SEARCH DETAIL
...