Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(5): e0267986, 2022.
Article in English | MEDLINE | ID: mdl-35522627

ABSTRACT

The role of phagocytes of children with cystic fibrosis (CF) associated with different phenotypes of chronic rhinosinusitis (CRS) is unclear. The aim of this study was to evaluate the phagocytic capacity of blood neutrophils and monocytes and production of superoxide anion by phagocytes in patients with CF with or without chronic rhinosinusitis and with or without nasal polyps (NP). This cross-sectional study was established in 2015-2017 in a tertiary reference center to the CF treatment, Brasilia, Brazil. Sample included 30 children volunteers with CRS related to CF (n = 16) and control subjects (n = 14). Epidemiological and clinical data were compared. Collection of 15 mL of peripheral blood and nasal endoscopy to identify the presence or absence of nasal polyps (NP) were performed. Phagocytosis of Saccharomyces cerevisiae by pathogen-associated molecular pattern receptors and opsonin receptors was assessed. Superoxide anion production was evaluated. The control group showed a higher phagocytic index to monocytes and neutrophils than to the CF or CF+CRS with NP groups [Kruskal-Wallis p = 0.0025] when phagocytosis were evaluated by pathogen-associated molecular pattern receptors (5 yeasts/cell). The phagocytic index of the CF+CRS without NP group was higher than in the CF+CRS with NP group (Kruskal-Wallis p = 0.0168). In the control group, the percentage of phagocytes involved in phagocytosis and superoxide anion production (74.0 ± 9.6%) were higher in all CF groups (p < 0,0001). The innate immune response, represented by phagocytic activity and superoxide anion production by monocytes and neutrophils was more impaired in patients with CF related or not related to CRS than in the control group. However, the phagocytic function of patients without NP showed less impairment.


Subject(s)
Cystic Fibrosis , Nasal Polyps , Rhinitis , Sinusitis , Chronic Disease , Cross-Sectional Studies , Cystic Fibrosis/genetics , Humans , Immunity, Innate , Nasal Polyps/complications , Pathogen-Associated Molecular Pattern Molecules , Sinusitis/genetics , Superoxides
2.
Proc Biol Sci ; 288(1962): 20211531, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34753356

ABSTRACT

In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.


Subject(s)
Antioxidants , Water , Animals , Antioxidants/analysis , Anura/physiology , Humans , Mammals , Peptides/analysis , Skin , Water/analysis
3.
J Nat Prod ; 84(6): 1787-1798, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34077221

ABSTRACT

Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Antiprotozoal Agents/pharmacology , Bothrops , Snake Venoms/chemistry , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/chemistry , Antiprotozoal Agents/chemistry , Cathelicidins , Cells, Cultured , Leishmania/drug effects , Macrophages , Mice, Inbred BALB C , Microbial Sensitivity Tests , South America
4.
Clin Exp Dent Res ; 7(1): 93-100, 2021 02.
Article in English | MEDLINE | ID: mdl-33188556

ABSTRACT

OBJECTIVES: For the first time in the history of periodontics, the production of lipid bodies by monocytes was assessed from blood of patients with periodontitis in comparison to systemically healthy individuals. The purpose of this study was to compare the lipid body frequency within monocytes between healthy patients and those with periodontal disease. MATERIALS AND METHODS: A total of 30 participants (11 males and 19 females), were divided between orally healthy control subjects (C, n = 16) and periodontitis subjects (P, n = 14), in a cross-sectional study. Both groups were systemically healthy. The following clinical periodontal parameters were assessed: probing depth, clinical attachment level, visible plaque index and gingival bleeding on probing index. Blood samples were collected to obtain monocytes containing lipid bodies, which were analyzed by light microscopy. RESULTS: The periodontitis group demonstrated a higher corpuscular index than the control group (nonopsonized p = .0296 or opsonized p = .0459; Mann-Whitney). The frequency of monocyte cells containing lipid bodies (basal p = .0147, opsonized p = .0084 or nonopsonized, p = .026; Mann-Whitney) was also higher compared to those observed in healthy individuals. CONCLUSIONS: The data suggest that periodontitis may contribute to a higher production of lipid bodies. It was also hypothesized that a major production of lipid bodies by monocytes in severe periodontitis, compared to orally healthy subjects, could interfere with the innate immune response or represents a higher reservoir of cholesterol esters within macrophages and a major risk to systemic implications, such as atherosclerosis.


Subject(s)
Monocytes , Periodontitis , Cross-Sectional Studies , Female , Humans , Lipid Droplets , Male , Periodontal Index
5.
Food Res Int ; 136: 109548, 2020 10.
Article in English | MEDLINE | ID: mdl-32846600

ABSTRACT

The aims of this study were to produce poly-ɛ-caprolactone lipid-core nanocapsules containing lycopene-rich extract from red guava (LEG), to characterize those nanoparticles and to evaluate their cytotoxic effects on human breast cancer cells. Lipid-core nanocapsules containing the extract (nanoLEG) were produced by the method of interfacial deposition of the preformed polymer. The nanoparticles were characterized by Dynamic Light Scattering (DLS), Polydispersity Index, Zeta Potential, pH, Encapsulation Efficiency, Nanoparticle Tracking Analysis (NTA), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Cell viability was evaluated by the MTT dye reduction method in the human breast cancer MCF-7 cell line and inhibition of ROS and NF-κB was assayed in living human microglial cell line (HMC3) by time-lapse images microscopy. A hemolytic activity assay was carried out with sheep blood. Data showed that nanoparticles average size was around 200 nm, nanoparticles concentration/mL was around 0.1 µM, negative zeta potential, pH < 5.0 and spherical shape, with low variation during a long storage period (7 months) at 5 °C, indicating stability of the system and protection against lycopene degradation. The percentage of encapsulation varied from 95% to 98%. The nanoLEG particles significantly reduced the viability of the MCF-7 cells after 24 h (61.47%) and 72 h (55.96%) of exposure, even at the lowest concentration tested (6.25-200 µg/ml) and improved on the cytotoxicity of free LEG to MCF-7. NanoLEG inhibited LPS-induced NF-kB activation and ROS production in microglial cells. The particles did not affect the membrane integrity of sheep blood erythrocytes at the concentrations tested (6.25-200 µg/mL). Thus, the formulation of lipid-core nanocapsules with a polysorbate 80-coated poly-ɛ-caprolactone wall was efficiently applied to stabilize the lycopene-rich extract from red guava, generating a product with satisfactory physico-chemical and biological properties for application as health-promoting nanotechnology-based nutraceutical, emphasizing its potential to be used as a cancer treatment.


Subject(s)
Breast Neoplasms , Nanocapsules , Psidium , Animals , Breast Neoplasms/drug therapy , Caproates , Humans , Lactones , Lipids , Lycopene , Plant Extracts/pharmacology , Sheep
6.
Article in English | MEDLINE | ID: mdl-32640562

ABSTRACT

Leishmania protozoans are the causal agents of neglected diseases that represent an important public health issue worldwide. The growing occurrence of drug-resistant strains of Leishmania and severe side effects of available treatments represent an important challenge for the leishmaniases treatment. We have previously reported the leishmanicidal activity of phylloseptin-1 (PSN-1), a peptide found in the skin secretion of Phyllomedusaazurea (=Pithecopus azureus), against Leishmaniaamazonensis promastigotes. However, its impact on the amastigote form of L. amazonensis and its impact on infected macrophages are unknown. In this work, we evaluated the effects of PSN-1 on amastigotes of L. amazonensis inside macrophages infected in vitro. We assessed the production of hydrogen peroxide and nitric oxide, as well as the levels of inflammatory and immunomodulatory markers (TGF-ß, TNF-α and IL-12), in infected and non-infected macrophages treated with PSN-1. Treatment with PSN-1 decreased the number of infected cells and the number of ingested amastigotes per cell when compared with the untreated cells. At 32 µM (64 µg/mL), PSN-1 reduced hydrogen peroxide levels in both infected and uninfected macrophages, whereas it had little effect on NO production or TGF-ß release. The effect of PSN-1 on IL-12 and TNF-α secretion depended on its concentration, but, in general, their levels tended to increase as PSN-1 concentration increased. Further in vitro and in vivo studies are needed to clarify the mechanisms of action of PSN-1 and its interaction with the immune system aiming to develop pharmacological applications.


Subject(s)
Leishmania , Macrophages, Peritoneal , Animals , Female , Macrophages , Mice , Mice, Inbred BALB C
7.
Biomolecules ; 10(4)2020 03 27.
Article in English | MEDLINE | ID: mdl-32230960

ABSTRACT

Amphibian skin is a multifunctional organ that plays key roles in defense, breathing, and water balance. In this study, skin secretion samples of the fire salamander (Salamandra salamandra) were separated using RP-HPLC and de novo sequenced using MALDI-TOF MS/MS. Next, we used an in silico platform to screen antioxidant molecules in the framework of density functional theory. One of the identified peptides, salamandrin-I, [M + H]+ = 1406.6 Da, was selected for solid-phase synthesis; it showed free radical scavenging activity against DPPH and ABTS radicals. Salamandrin-I did not show antimicrobial activity against Gram-positive and -negative bacteria. In vitro assays using human microglia and red blood cells showed that salamandrin-I has no cytotoxicity up to the concentration of 100 µM. In addition, in vivo toxicity tests on Galleria mellonella larvae resulted in no mortality at 20 and 40 mg/kg. Antioxidant peptides derived from natural sources are increasingly attracting interest. Among several applications, these peptides, such as salamandrin-I, can be used as templates in the design of novel antioxidant molecules that may contribute to devising strategies for more effective control of neurological disease.


Subject(s)
Amphibian Proteins/chemistry , Amphibian Proteins/pharmacology , Antioxidants/pharmacology , Salamandra , Skin/chemistry , Amphibian Proteins/isolation & purification , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Circular Dichroism , Drug Evaluation, Preclinical , Humans , Microbial Sensitivity Tests , Moths/drug effects , Peptides/chemistry , Peptides/pharmacology , Toxicity Tests
8.
Int J Dent ; 2020: 8636795, 2020.
Article in English | MEDLINE | ID: mdl-32148505

ABSTRACT

BACKGROUND: Several studies have focused on the association between periodontitis and systemic implications; however, the biological mechanisms of the immune responses before and after periodontal therapy involved in this relationship, such as phagocytic functions, remain unclear. OBJECTIVES: This study aimed to investigate whether periodontal treatment improves the phagocytic function of blood monocytes in patients with severe periodontitis. Materials and Methods. A nonrandomized sample of 55 participants was enrolled in the study. Two groups were studied: control (n = 27, healthy subjects without periodontal disease) and patients (n = 27, healthy subjects without periodontal disease) and patients (. RESULTS: Periodontitis induced impaired phagocytosis by monocytes. Phagocytosis at baseline was significantly lower in periodontitis patients [median, 13.2 (range of 7.1 to 20.8) and 60.7 (40.6 to 88.6)] than in controls [27.4 (15.5 to 40.5)] and 98 (68.2 to 122.9)] for nonsensitized or sensitized samples, respectively. After supportive therapy, patients showed a significant enhancement of phagocytic functions [33.7 (14.6 to 53.2) and 108.5 (99.6 to 159.5)] for nonsensitized and sensitized samples, respectively. Periodontal treatment increased the phagocytic capacity to a level similar to that observed in the control group and improved the capacity of phagocytes to produce superoxide anion. CONCLUSIONS: The results suggest that periodontal therapy in patients with severe periodontitis provides a state of homeostasis due to the reestablishment of phagocytic function and increased production of NBT (Regional Registry No. RBR-24T799; Universal Registry No. U1111-1133-5512).

9.
Front Physiol ; 10: 1261, 2019.
Article in English | MEDLINE | ID: mdl-31632296

ABSTRACT

Eosinophils are multifunctional cells with several functions both in healthy individuals, and those with several diseases. Increased number and morphological changes in eosinophils have been correlated with the severity of an acute asthma exacerbation. We measured eosinophils obtained from healthy controls and individuals with acute asthma using atomic force microscopy (AFM). In the control samples, cells showed more rounded morphologies with some spreading, while activated cells from symptomatic individuals were spreading, and presenting emission of multiple pseudopods. Eosinophils presenting separate granules close to the cells suggesting some degranulation was also increased in asthma samples. In comparison to histopathological techniques based on brightfield microscopy, AFM showed considerably more details of these morphological changes, making the technique much more sensitive to detect eosinophil morphological changes that indicate functional alteration of this cell. AFM could be an important tool to evaluate diseases with alterations in eosinophil functions.

10.
Int J Mol Sci ; 19(6)2018 06 19.
Article in English | MEDLINE | ID: mdl-29921756

ABSTRACT

Schistosomiasis, caused by helminth flatworms of the genus Schistosoma, is an infectious disease mainly associated with poverty that affects millions of people worldwide. Since treatment for this disease relies only on the use of praziquantel, there is an urgent need to identify new antischistosomal drugs. Piplartine is an amide alkaloid found in several Piper species (Piperaceae) that exhibits antischistosomal properties. The aim of this study was to evaluate the structure­function relationship between piplartine and its five synthetic analogues (19A, 1G, 1M, 14B and 6B) against Schistosoma mansoni adult worms, as well as its cytotoxicity to mammalian cells using murine fibroblast (NIH-3T3) and BALB/cN macrophage (J774A.1) cell lines. In addition, density functional theory calculations and in silico analysis were used to predict physicochemical and toxicity parameters. Bioassays revealed that piplartine is active against S. mansoni at low concentrations (5⁻10 µM), but its analogues did not. In contrast, based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, piplartine exhibited toxicity in mammalian cells at 785 µM, while its analogues 19A and 6B did not reduce cell viability at the same concentrations. This study demonstrated that piplartine analogues showed less activity against S. mansoni but presented lower toxicity than piplartine.


Subject(s)
Anthelmintics/pharmacology , Piperidones/pharmacology , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , 3T3 Cells , Animals , Anthelmintics/chemistry , Anthelmintics/toxicity , Cricetinae , Fibroblasts/drug effects , Macrophages/drug effects , Mice , Mice, Inbred BALB C , Piper/chemistry , Piperidones/chemistry , Piperidones/toxicity , Plant Extracts/chemistry , Plant Extracts/toxicity , Quantitative Structure-Activity Relationship , Snails
11.
PLoS One ; 13(5): e0196667, 2018.
Article in English | MEDLINE | ID: mdl-29750792

ABSTRACT

Schistosomiasis is a disease caused by parasites of the genus Schistosoma, currently affecting more than 200 million people. Among the various species of this parasite that infect humans, S. mansoni is the most common. Pharmacological treatment is limited to the use of a single drug, praziquantel (PZQ), despite reports of parasite resistance and low efficacy. It is therefore necessary to investigate new potential schistosomicidal compounds. In this study, we tested the efficacy of epiisopilosine (EPIIS) in a murine model of schistosomiasis. A single dose of EPIIS (100 or 400 mg/kg) administered orally to mice infected with adult S. mansoni resulted in reduced worm burden and egg production. The treatment with the lower dose of EPIIS (100 mg/kg) significantly reduced total worm burden by 60.61% (P < 0.001), as well as decreasing hepatosplenomegaly and egg excretion. Scanning electron microscopy revealed morphological changes in the worm tegument after treatment. Despite good activity of EPIIS in adult S. mansoni, oral treatment with single dose of EPIIS 100 mg/kg had only moderate effects in mice infected with juvenile S. mansoni. In addition, we performed cytotoxicity and toxicological studies with EPIIS and found no in vitro cytotoxicity (in HaCaT, and NIH-3T3 cells) at a concentration of 512 µg/mL. We also performed in silico analysis of toxicological properties and showed that EPIIS had low predicted toxicity. To confirm this, we investigated systemic acute toxicity in vivo by orally administering a 2000 mg/kg dose to Swiss mice. Treated mice showed no significant changes in hematological, biochemical, or histological parameters compared to non-treated animals. Epiisopilosine showed potential as a schistosomicidal drug: it did not cause acute toxicity and it displayed an acceptable safety profile in the animal model.


Subject(s)
Alkaloids/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Animals , Cell Line , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Parasite Egg Count/methods , Praziquantel/pharmacology , Schistosomiasis mansoni/parasitology , Schistosomicides/pharmacology
12.
Biopolymers ; 105(12): 873-86, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27463422

ABSTRACT

Although the mechanism of action of antimicrobial peptides (AMPs) is not clear, they can interact electrostatically with the cell membranes of microorganisms. New ocellatin-PT peptides were recently isolated from the skin secretion of Leptodactylus pustulatus. The secondary structure of these AMPs and their effect on Leishmania infantum cells, and on different lipid surface models was characterized in this work. The results showed that all ocellatin-PT peptides have an α-helix structure and five of them (PT3, PT4, PT6 to PT8) have leishmanicidal activity; PT1 and PT2 affected the cellular morphology of the parasites and showed greater affinity for leishmania and bacteria-mimicking lipid membranes than for those of mammals. The results show selectivity of ocellatin-PTs to the membranes of microorganisms and the applicability of biophysical methods to clarify the interaction of AMPs with cell membranes.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antiprotozoal Agents/chemistry , Leishmania infantum , Membranes, Artificial , Membrane Lipids/chemistry , Protein Structure, Secondary
13.
PLoS Negl Trop Dis ; 9(3): e0003656, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25816129

ABSTRACT

Schistosomiasis is a serious disease currently estimated to affect more that 207 million people worldwide. Due to the intensive use of praziquantel, there is increasing concern about the development of drug-resistant strains. Therefore, it is necessary to search for and investigate new potential schistosomicidal compounds. This work reports the in vivo effect of the alkaloid epiisopiloturine (EPI) against adults and juvenile worms of Schistosoma mansoni. EPI was first purified its thermal behavior and theoretical solubility parameters charaterised. In the experiment, mice were treated with EPI over the 21 days post-infection with the doses of 40 and 200 mg/kg, and 45 days post-infection with single doses of 40, 100 and 300 mg/kg. The treatment with EPI at 40 mg/kg was more effective in adult worms when compared with doses of 100 and 300 mg/kg. The treatment with 40 mg/kg in adult worms reduced parasite burden significantly, lead to reduction in hepatosplenomegaly, reduced the egg burden in faeces, and decreased granuloma diameter. Scanning electron microscopy revealed morphological changes to the parasite tegument after treatment, including the loss of important features. Additionally, the in vivo treatment against juvenile with 40 mg/kg showed a reduction of the total worm burden of 50.2%. Histopathological studies were performed on liver, spleen, lung, kidney and brain and EPI was shown to have a DL50 of 8000 mg/kg. Therefore EPI shows potential to be used in schistosomiasis treatment. This is the first time that schistosomicidal in vivo activity of EPI has been reported.


Subject(s)
4-Butyrolactone/analogs & derivatives , Imidazoles/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , 4-Butyrolactone/pharmacology , Animals , Dose-Response Relationship, Drug , Feces/parasitology , Granuloma/pathology , Liver/drug effects , Liver/parasitology , Mice , Microscopy, Electron, Scanning , Schistosoma mansoni/ultrastructure
14.
J Nanobiotechnology ; 12: 36, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25223611

ABSTRACT

BACKGROUND: Type I collagen is an abundant natural polymer with several applications in medicine as matrix to regenerate tissues. Silver nanoparticles is an important nanotechnology material with many utilities in some areas such as medicine, biology and chemistry. The present study focused on the synthesis of silver nanoparticles (AgNPs) stabilized with type I collagen (AgNPcol) to build a nanomaterial with biological utility. Three formulations of AgNPcol were physicochemical characterized, antibacterial activity in vitro and cell viability assays were analyzed. AgNPcol was characterized by means of the following: ultraviolet-visible spectroscopy, dynamic light scattering analysis, Fourier transform infrared spectroscopy, atomic absorption analysis, transmission electron microscopy and of X-ray diffraction analysis. RESULTS: All AgNPcol showed spherical and positive zeta potential. The AgNPcol at a molar ratio of 1:6 showed better characteristics, smaller hydrodynamic diameter (64.34 ± 16.05) and polydispersity index (0.40 ± 0.05), and higher absorbance and silver reduction efficiency (0.645 mM), when compared with the particles prepared in other mixing ratios. Furthermore, these particles showed antimicrobial activity against both Staphylococcus aureus and Escherichia coli and no toxicity to the cells at the examined concentrations. CONCLUSIONS: The resulted particles exhibited favorable characteristics, including the spherical shape, diameter between 64.34 nm and 81.76 nm, positive zeta potential, antibacterial activity, and non-toxicity to the tested cells (OSCC).


Subject(s)
Anti-Bacterial Agents/pharmacology , Collagen Type I/pharmacology , Metal Nanoparticles/chemistry , Silver/pharmacology , Anti-Bacterial Agents/chemistry , Cell Line/drug effects , Cell Survival/drug effects , Chemistry Techniques, Synthetic , Collagen Type I/administration & dosage , Collagen Type I/chemistry , Drug Evaluation, Preclinical/methods , Dynamic Light Scattering , Escherichia coli/drug effects , Humans , Metal Nanoparticles/administration & dosage , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Silver/administration & dosage , Silver/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , X-Ray Diffraction
15.
Sci Justice ; 53(4): 402-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24188341

ABSTRACT

In many crimes, the elapsed time between production and collecting fingermark traces is crucial. and a method able to detect the aging of latent prints would represent an improvement in forensic procedures. Considering that as the latent print gets older, substantial changes in the relative proportion of individual components secreted by skin glands could affect the morphology of ridges, morphometry could be a potential tool to assess the aging of latent fingermarks. Then, considering the very limited research in the field, the present work aims to evaluate the morphometry of latent palmprint ridges, as a function of time, in order to identify an aging pattern. The latent marks were deposited by 20 donors on glass microscope slides considering pressure and contact angle, and then were maintained under controlled environmental conditions. The morphometric study was conducted on marks developed with magnetic powder in 7 different time intervals after deposition (0, 5, 10, 15, 20, 25 or 30 days); 60 ridges were evaluated for each developed mark. The results showed that: 1) the method for the replacement and mixing of skin secretions on the palm was appropriate to ensure reproducibility of latent prints, and 2) considering the studied group, there was a time-dependent reduction in the width of ridges and on the percentage of visible ridges over 30 days. Results suggest the possibility of using the morphometric method to determine an aging profile of latent palmprints on glass surface, aiming for forensic purposes.


Subject(s)
Dermatoglyphics , Hand/anatomy & histology , Skin/ultrastructure , Adult , Female , Humans , Linear Models , Male , Time Factors , Young Adult
16.
Int J Mol Sci ; 14(3): 4969-81, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23455467

ABSTRACT

The present study describes the development of a green synthesis of silver nanoparticles reduced and stabilized by exuded gum from Anacardium occidentale L. and evaluates in vitro their antibacterial and cytotoxic activities. Characterization of cashew gum-based silver nanoparticles (AgNPs) was carried out based on UV-Vis spectroscopy, transmission electron microscopy and dynamic light scattering analysis which revealed that the synthesized silver nanoparticles were spherical in shape, measuring about 4 nm in size with a uniform dispersal. AgNPs presented antibacterial activity, especially against Gram-negative bacteria, in concentrations where no significant cytotoxicity was observed.

17.
Exp Parasitol ; 134(1): 18-25, 2013 May.
Article in English | MEDLINE | ID: mdl-23402845

ABSTRACT

The control of leishmaniases poses an important challenge due to the scarcity and toxicity of the pharmacological options available. We have previously shown that pravastatin significantly improves the course of the disease in Leishmania (L.) amazonensis-infected BALB/c mice. Since the drug caused no direct effect on the parasite, we decided to evaluate its immunomodulatory action in this experimental model. To evaluate the impact of pravastatin treatment, BALB/c mice infected or not with L. (L.) amazonensis were treated with pravastatin (20 mg/kg daily) or saline during 30 or 90 days and phagocytosis, hydrogen peroxide, nitric oxide and the tumor necrosis factor production by peritoneal macrophages were assessed. We showed that pravastatin increased the phagocytosis mediated by complement and immunoglobulin receptors (63.5 to 130.3; p=0.03, t test), but not that occurring via pattern recognition receptors, induced a rise of nitric oxide production by macrophages (2.1 µM to 12.9 µM; p=0.04, Mann-Whitney test), endowing these cells to better kill ingested leishmania organisms, caused no modification of the otherwise increased production of hydrogen peroxide by macrophages, and reduced the overproduction of tumor necrosis factor (166.6 pg/mL to 3.9 pg/mL; p=0.016, Mann-Whitney test), a major component of the exacerbated inflammation associated to leishmaniases. Our findings point to the potential usefulness of pravastatin as an adjunct to the treatment of leishmaniases, based on its powerful immunomodulatory effects and low toxicity.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Immunologic Factors/pharmacology , Leishmania mexicana/drug effects , Leishmaniasis, Cutaneous/drug therapy , Macrophages/drug effects , Pravastatin/pharmacology , Animals , Female , Hydrogen Peroxide/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Immunologic Factors/therapeutic use , Leishmania mexicana/immunology , Leishmaniasis, Cutaneous/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Phagocytosis/drug effects , Pravastatin/therapeutic use , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
18.
Exp Parasitol ; 127(3): 658-64, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21176775

ABSTRACT

The high toxicity of current drugs for treatment of leishmaniasis is a major hindrance for controlling the disease. Pravastatin is a well-known drug with anti-inflammatory and immunomodulatory properties that may modulate host defense mechanisms against Leishmania. We evaluated the influence of prolonged pravastatin treatment on the survival of Leishmania amazonensis-infected animals (BALB/c, C57BL6 mice and Syrian hamsters), including weekly measurement of cutaneous lesions (footpad thickness) and weight. Pravastatin improved survival of Leishmania-infected BALB/c mice but not of infected C57BL6 mice or hamsters. On the 50th week of follow-up, 71% of pravastatin-treated Leishmania-infected BALB/c mice were alive against 29% of control group (p<0.01). Low footpad thickness was found on BALB/c pravastatin treated mice from the 14th week (p<0.05), and 20th week onward for C57BL6 treated mice. Pravastatin treatment decreased weight loss in Leishmania-infected C57BL6 mice and Syrian hamsters, but not infected BALB/c mice. Our results points to beneficial effects of pravastatin on the evolution of the disease in the murine leishmaniasis model.


Subject(s)
Antiprotozoal Agents/therapeutic use , Leishmania mexicana/drug effects , Leishmaniasis, Cutaneous/drug therapy , Pravastatin/therapeutic use , Analysis of Variance , Animals , Antiprotozoal Agents/pharmacology , Body Weight , Cricetinae , Disease Models, Animal , Disease Susceptibility , Dose-Response Relationship, Drug , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Leishmania mexicana/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/mortality , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pravastatin/pharmacology , Statistics, Nonparametric , Survival Rate
19.
Exp Parasitol ; 123(1): 11-6, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19460376

ABSTRACT

The development of drug resistance by infectious agents represents a major hindrance for controlling parasitic diseases and has stimulated the search for new compounds. We have previously shown that phylloseptin-1 (PS-1), a cationic peptide from the skin secretion of Phyllomedusa azurea, exhibited potent antimicrobial activity. Now we evaluate the effect of PS-1 on Leishmania amazonensis and Plasmodium falciparum. Concentrations as low as 0.5 microg/mL of PS-1 exhibited antileishmanial activity comparable to that of antimoniate of N-metilglucamine, while the antiplasmodial effect of PS-1 was evident at the concentration of 16 microg/mL, and reached an activity comparable to that of artesunate, at the concentration of 64 microg/mL. The high antiparasitic activity of PS-1, together with the unrelatedness of its chemical structure to any present antimicrobial drug, which prevents the development of cross-resistance, together with its non-toxicity to mammalian cells make this peptide a promising candidate for the treatment of malaria and leishmaniasis.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania mexicana/drug effects , Plasmodium falciparum/drug effects , Animals , Antimicrobial Cationic Peptides/toxicity , Antiprotozoal Agents/toxicity , Anura , Dose-Response Relationship, Drug , Erythrocytes/parasitology , Female , Humans , Leishmania mexicana/growth & development , Macrophages, Peritoneal/drug effects , Mice , Plasmodium falciparum/growth & development , Skin/metabolism
20.
Comp Biochem Physiol A Mol Integr Physiol ; 151(3): 336-343, 2008 Nov.
Article in English | MEDLINE | ID: mdl-17442605

ABSTRACT

The present study reports the structural characteristics, the biological activities, and preliminary clinical investigations of three synthetic members of the dermaseptin family of antimicrobial peptides. The three peptides showed similar tendencies to form alpha-helical structures in non-polar media. The antimicrobial activity towards bacteria and fungi was determined in the micromolar concentration and the peptides did not influenced peritoneal cells viability. One of the peptides was intravenously administered in mice at concentrations similar to those of antibiotics employed in bacterial/fungal infections and it did not cause any detectable changes in cells and tissues.


Subject(s)
Amphibian Proteins/chemistry , Amphibian Proteins/toxicity , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/toxicity , Candida albicans/drug effects , Peritoneum/cytology , Streptococcus/drug effects , Amino Acid Sequence , Amphibian Proteins/metabolism , Animals , Antimicrobial Cationic Peptides/metabolism , Anura , Candida tropicalis/drug effects , Cell Survival/drug effects , Circular Dichroism , Dose-Response Relationship, Drug , Leukocyte Count , Mice , Microbial Sensitivity Tests , Molecular Sequence Data , Nocardia/drug effects , Protein Structure, Secondary , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...