Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 181(1): 55-62, 2019 09.
Article in English | MEDLINE | ID: mdl-31209126

ABSTRACT

WRINKLED1 (WRI1) is a transcriptional activator that binds to a conserved sequence (designated as AW box) boxes in the promoters of many genes from central metabolism and fatty acid (FA) synthesis, resulting in their transcription. BIOTIN ATTACHMENT DOMAIN-CONTAINING (BADC) proteins lack a biotin-attachment domain and are therefore inactive, but in the presence of excess FA, BADC1 and BADC3 are primarily responsible for the observed long-term irreversible inhibition of ACETYL-COA CARBOXYLASE, and consequently FA synthesis. Here, we tested the interaction of WRI1 with BADC genes in Arabidopsis (Arabidopsis thaliana) and found purified WRI1 bound with high affinity to canonical AW boxes from the promoters of all three BADC genes. Consistent with this observation, both expression of BADC1, BADC2, and BADC3 genes and BADC1 protein levels were reduced in wri1-1 relative to the wild type, and elevated upon WRI1 overexpression. The double mutant badc1 badc2 phenocopied wri1-1 with respect to both reduction in root length and elevation of indole-3-acetic acid-Asp levels relative to the wild type. Overexpression of BADC1 in wri1-1 decreased indole-3-acetic acid-Asp content and partially rescued its short-root phenotype, demonstrating a role for BADCs in seedling establishment. That WRI1 positively regulates genes encoding both FA synthesis and BADC proteins (i.e. conditional inhibitors of FA synthesis), represents a coordinated mechanism to achieve lipid homeostasis in which plants couple the transcription of their FA synthetic capacity with their capacity to biochemically downregulate it.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Biotin/metabolism , Fatty Acids/antagonists & inhibitors , Transcription Factors/metabolism , Arabidopsis/enzymology , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Conserved Sequence , Fatty Acids/metabolism , Promoter Regions, Genetic/genetics , Protein Domains , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Transcription Factors/genetics
2.
Sci Rep ; 7: 42766, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220806

ABSTRACT

Very little information exists for long-term changes in genetic variation in natural populations. Here we take the unique opportunity to compare a set of data for SNPs in 15 metabolic genes from eastern US collections of Drosophila melanogaster that span a large latitudinal range and represent two collections separated by 12 to 13 years. We also expand this to a 22-year interval for the Adh gene and approximately 30 years for the G6pd and Pgd genes. During these intervals, five genes showed a statistically significant change in average SNP allele frequency corrected for latitude. While much remains unchanged, we see five genes where latitudinal clines have been lost or gained and two where the slope significantly changes. The long-term frequency shift towards a southern favored Adh S allele reported in Australia populations is not observed in the eastern US over a period of 21 years. There is no general pattern of southern-favored or northern-favored alleles increasing in frequency across the genes. This observation points to the fluid nature of some allelic variation over this time period and the action of selective responses or migration that may be more regional than uniformly imposed across the cline.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Frequency , Animals , Polymorphism, Single Nucleotide , Selection, Genetic
3.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26378219

ABSTRACT

There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Enzymes/metabolism , Food Deprivation , Longevity/genetics , Aging/genetics , Animal Nutritional Physiological Phenomena/genetics , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression , Mutagenesis, Site-Directed , Oxidation-Reduction
4.
Proc Biol Sci ; 282(1800): 20142688, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25520361

ABSTRACT

In this report, we examine the hypothesis that the drivers of latitudinal selection observed in the eastern US Drosophila melanogaster populations are reiterated within seasons in a temperate orchard population in Pennsylvania, USA. Specifically, we ask whether alleles that are apparently favoured in northern populations are also favoured early in the spring, and decrease in frequency from the spring to autumn with the population expansion. We use SNP data collected for 46 metabolic genes and 128 SNPs representing the central metabolic pathway and examine for the aggregate SNP allele frequencies whether the association of allele change with latitude and that with increasing days of spring-autumn season are reversed. Testing by random permutation, we observe a highly significant negative correlation between these associations that is consistent with this expectation. This correlation is stronger when we confine our analysis to only those alleles that show significant latitudinal changes. This pattern is not caused by association with chromosomal inversions. When data are resampled using SNPs for amino acid change the relationship is not significant but is supported when SNPs associated with cis-expression are only considered. Our results suggest that climate factors driving latitudinal molecular variation in a metabolic pathway are related to those operating on a seasonal level within populations.


Subject(s)
Drosophila melanogaster/genetics , Adaptation, Physiological/genetics , Alleles , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Seasons , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...