Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722065

ABSTRACT

A single anti-collision trajectory generation problem for an "own" vessel only is significantly different from the challenge of generating a whole set of safe trajectories for multi-surface vehicle encounter situations in the open sea. Effective solutions for such problems are needed these days, as we are entering the era of autonomous ships. The article specifies the problem of anti-collision trajectory planning in many-to-many encounter situations. The proposed original multi-surface vehicle beam search algorithm (MBSA), based on the beam search strategy, solves the problem. The general idea of the MBSA involves the application of a solution for one-to-many encounter situations (using the beam search algorithm, BSA), which was tested on real automated radar plotting aid (ARPA) and automatic identification system (AIS) data. The test results for the MBSA were from simulated data, which are discussed in the final part. The article specifies the problem of anti-collision trajectory planning in many-to-many encounter situations involving moving autonomous surface vehicles, excluding Collision Regulations (COLREGs) and vehicle dynamics.

2.
Sensors (Basel) ; 19(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817086

ABSTRACT

The biggest challenges in the maritime environment are accidents and excessive fuel consumption. In order to improve the safety of navigation at sea and to reduce fuel consumption, the strategy of anti-collision, shortest trajectory planning is proposed. The strategy described in this paper is based on the beam search method. The beam search algorithm (BSA) takes into account many safe trajectories for the present ship and chooses the best in terms of length and other criteria. The risk of collision of present ship with any target ships is detected when the closest point of approach (CPA) of the present ship is violated by the target ship's planned trajectory. Only course alteration of the present ship is applied, and not speed alteration. The algorithm has been implemented in the decision support system NAVDEC and tested in a real navigation environment on the m/f Wolin, a Polish ferry. Almost all BSA trajectories calculated were shorter in comparison to the standard NAVDEC-calculated algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...