Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37762006

ABSTRACT

Chronic inflammation plays an important role in the development of neurodegenerative diseases, such as Parkinson's disease (PD). In the present study, we synthesized 25 novel xanthine derivatives with variable substituents at the N1-, N3- and C8-position as adenosine receptor antagonists with potential anti-inflammatory activity. The compounds were investigated in radioligand binding studies at all four human adenosine receptor subtypes, A1, A2A, A2B and A3. Compounds showing nanomolar A2A and dual A1/A2A affinities were obtained. Three compounds, 19, 22 and 24, were selected for further studies. Docking and molecular dynamics simulation studies indicated binding poses and interactions within the orthosteric site of adenosine A1 and A2A receptors. In vitro studies confirmed the high metabolic stability of the compounds, and the absence of toxicity at concentrations of up to 12.5 µM in various cell lines (SH-SY5Y, HepG2 and BV2). Compounds 19 and 22 showed anti-inflammatory activity in vitro. In vivo studies in mice investigating carrageenan- and formalin-induced inflammation identified compound 24 as the most potent anti-inflammatory derivative. Future studies are warranted to further optimize the compounds and to explore their therapeutic potential in neurodegenerative diseases.


Subject(s)
Neuroblastoma , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Inflammation , Adenosine , Carrageenan
2.
Int J Mol Sci ; 24(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628900

ABSTRACT

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Subject(s)
Alzheimer Disease , Histamine H3 Antagonists , Animals , Mice , Mice, Inbred C57BL , Glycogen Synthase Kinase 3 beta , Phosphatidylinositol 3-Kinases , Dizocilpine Maleate , Histamine H3 Antagonists/pharmacology , Histamine H3 Antagonists/therapeutic use , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinase , TOR Serine-Threonine Kinases , Amnesia/chemically induced , Amnesia/drug therapy , Alzheimer Disease/drug therapy , Signal Transduction , Cognition
3.
Pharmacol Rep ; 75(5): 1211-1229, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37624466

ABSTRACT

BACKGROUND: α2-adrenoceptor ligands have been investigated as potential therapeutic agents for the treatment of obesity. Our previous studies have shown that guanabenz reduces the body weight of obese rats, presumably through its anorectic action. This demonstrates an additional beneficial effect on selected metabolic parameters, including glucose levels. The purpose of this present research was to determine the activity of guanabenz's metabolite-4-hydroxy guanabenz hydrochloride (4-OH-Guanabenz). METHODS: We performed in silico analyses, involving molecular docking to targets of specific interest as well as other potential biological targets. In vitro investigations were conducted to assess the selectivity profile of 4-OH-Guanabenz binding to α-adrenoceptors, along with intrinsic activity studies involving α2-adrenoceptors and trace amine-associated receptor 1 (TAAR1). Additionally, the effects of 4-OH-Guanabenz on the body weight of rats and selected metabolic parameters were evaluated using the diet-induced obesity model. Basic safety and pharmacokinetic parameters were also examined. RESULTS: 4-OH-guanabenz is a partial agonist of α2A-adrenoceptor. The calculated EC50 value for it is 316.3 nM. It shows weak agonistic activity at TAAR1 too. The EC50 value for 4-OH-Guanabenz calculated after computer simulation is 330.6 µM. Its primary mode of action is peripheral. The penetration of 4-OH-Guanabenz into the brain is fast (tmax = 15 min), however, with a low maximum concentration of 64.5 ng/g. 4-OH-Guanabenz administered ip at a dose of 5 mg/kg b.w. to rats fed a high-fat diet causes a significant decrease in body weight (approximately 14.8% compared to the baseline weight before treatment), reduces the number of calories consumed by rats, and decreases plasma glucose and triglyceride levels. CONCLUSIONS: The precise sequence of molecular events within the organism, linking the impact of 4-OH-Guanabenz on α2A-adrenoceptor and TAAR1 with weight reduction and the amelioration of metabolic disturbances, remains an unresolved matter necessitating further investigation. Undoubtedly, the fact that 4-OH-Guanabenz is a metabolite of a well-known drug has considerable importance, which is beneficial from an economic point of view and towards its further development as a drug candidate.

4.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35887268

ABSTRACT

The GPR18 receptor, often referred to as the N-arachidonylglycine receptor, although assigned (along with GPR55 and GPR119) to the new class A GPCR subfamily-lipid receptors, officially still has the status of a class A GPCR orphan. While its signaling pathways and biological significance have not yet been fully elucidated, increasing evidence points to the therapeutic potential of GPR18 in relation to immune, neurodegenerative, and cancer processes to name a few. Therefore, it is necessary to understand the interactions of potential ligands with the receptor and the influence of particular structural elements on their activity. Thus, given the lack of an experimentally solved structure, the goal of the present study was to obtain a homology model of the GPR18 receptor in the inactive state, meeting all requirements in terms of protein structure quality and recognition of active ligands. To increase the reliability and precision of the predictions, different contemporary protein structure prediction methods and software were used and compared herein. To test the usability of the resulting models, we optimized and compared the selected structures followed by the assessment of the ability to recognize known, active ligands. The stability of the predicted poses was then evaluated by means of molecular dynamics simulations. On the other hand, most of the best-ranking contemporary CADD software/platforms for its full usability require rather expensive licenses. To overcome this down-to-earth obstacle, the overarching goal of these studies was to test whether it is possible to perform the thorough CADD experiments with high scientific confidence while using only license-free/academic software and online platforms. The obtained results indicate that a wide range of freely available software and/or academic licenses allow us to carry out meaningful molecular modelling/docking studies.


Subject(s)
Molecular Dynamics Simulation , Receptors, G-Protein-Coupled , Ligands , Molecular Docking Simulation , Receptors, G-Protein-Coupled/metabolism , Reproducibility of Results
5.
Molecules ; 28(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36615435

ABSTRACT

The multitarget-directed ligands demonstrating affinity to histamine H3 receptor and additional cholinesterase inhibitory potency represent a promising strategy for research into the effective treatment of Alzheimer's disease. In this study, a novel series of benzophenone derivatives was designed and synthesized. Among these derivatives, we identified compound 6 with a high affinity for H3R (Ki = 8 nM) and significant inhibitory activity toward BuChE (IC50 = 172 nM and 1.16 µM for eqBuChE and hBuChE, respectively). Further in vitro studies revealed that compound 6 (4-fluorophenyl) (4-((5-(piperidin-1-yl)pentyl)oxy)phenyl)methanone) displays moderate metabolic stability in mouse liver microsomes, good permeability with a permeability coefficient value (Pe) of 6.3 × 10-6 cm/s, and its safety was confirmed in terms of hepatotoxicity in the HepG2 cell line. Therefore, we investigated the in vivo activity of compound 6 in the Passive Avoidance Test and the Formalin Test. While compound 6 did not show a statistically significant influence on memory and learning, it showed analgesic properties in both acute (ED50 = 20.9 mg/kg) and inflammatory (ED50 = 17.5 mg/kg) pain.


Subject(s)
Alzheimer Disease , Receptors, Histamine H3 , Mice , Animals , Cholinesterases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Histamine , Receptors, Histamine H3/metabolism , Cholinesterase Inhibitors/pharmacology , Receptors, Histamine , Ligands , Structure-Activity Relationship
6.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34832862

ABSTRACT

Noting the worldwide rapid increase in the prevalence of overweight and obesity new effective drugs are now being sought to combat these diseases. Histamine H3 receptor antagonists may represent an effective therapy as they have been shown to modulate histamine synthesis and release and affect a number of other neurotransmitters (norepinephrine, acetylcholine, γ-aminobutyric acid, serotonin, substance P) thus influencing the food intake. Based on the preliminary studies determining affinity, intrinsic activity, and selected pharmacokinetic parameters, two histamine H3 receptor ligands were selected. Female rats were fed palatable food for 28 days and simultaneously administered the tested compounds intraperitoneally (i.p.) at a dose of 10 or 1 mg/kg b.w./day. Weight was evaluated daily and calorie intake was evaluated once per week. The plasma levels of cholesterol, triglycerides, leptin, adiponectin, ghrelin, corticosterone, CRP and IL-6 were determined at the end of experiment. The glucose tolerance test was also performed. To exclude false positives, the effect of tested compounds on spontaneous activity was monitored during the treatment, as well as the amount of consumed kaolin clay was studied as a reflection of possible gastrointestinal disturbances comparable to nausea. The histamine H3 receptor antagonists KSK-59 and KSK-73 administered i.p. at a dose of 10 mg/kg b.w. prevented weight gain in a rat model of excessive eating. They reduced adipose tissue deposits and improved glucose tolerance. Both compounds showed satisfying ability to penetrate through biological membranes determined in in vitro studies. Compound KSK-73 also reduced the caloric intake of the experimental animals what indicates its anorectic effect. These results show the pharmacological properties of histamine H3 receptor antagonists, (4-pyridyl)piperazine derivatives, as the compounds causing not only slower weight gain but also ameliorating some metabolic disorders in rats having the opportunity to overeat.

7.
Molecules ; 26(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921144

ABSTRACT

In an attempt to find new dual acting histamine H3 receptor (H3R) ligands, we designed a series of compounds, structurally based on previously described in our group, a highly active and selective human histamine H3 receptor (hH3R) ligand KSK63. As a result, 15 obtained compounds show moderate hH3R affinity, the best being the compound 17 (hH3R Ki = 518 nM). Docking to the histamine H3R homology model revealed two possible binding modes, with key interactions retained in both cases. In an attempt to find possible dual acting ligands, selected compounds were tested for antioxidant properties. Compound 16 (hH3R Ki = 592 nM) showed the strongest antioxidant properties at the concentration of 10-4 mol/L. It significantly reduced the amount of free radicals presenting 50-60% of ascorbic acid activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, as well as showed antioxidative properties in the ferric reducing antioxidant power (FRAP) assay. Despite the yet unknown antioxidation mechanism and moderate hH3R affinity, 16 (QD13) constitutes a starting point for the search of potential dual acting H3R ligands-promising tools for the treatment of neurological disorders associated with increased neuronal oxidative stress.


Subject(s)
Antioxidants/chemistry , Histamine H3 Antagonists/chemistry , Animals , Dose-Response Relationship, Drug , Humans , Molecular Structure , Piperazine/chemistry , Receptors, Histamine H3/chemistry , Structure-Activity Relationship
8.
Eur J Med Chem ; 213: 113041, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33261900

ABSTRACT

A series of 4-pyridylpiperazine derivatives with varying regulatory region substituents proved to be potent histamine H3 receptor (H3R) ligands in the nanomolar concentration range. The most influential modification that affected the affinity toward the H3R appeared by introducing electron-withdrawing moieties into the distal aromatic ring. In order to finally discuss the influence of the characteristic 4-pyridylpiperazine moiety on H3R affinity, two Ciproxifan analogues 2 and 3 with a slight modification in their basic part were obtained. The replacement of piperazine in 3 with piperidine in compound 2, led to slightly reduced affinity towards the H3R (Ki = 3.17 and 7.70 nM, respectively). In fact, 3 showed the highest antagonistic properties among all compounds in this series, hence affirming our previous assumptions, that the 4-pyridylpiperazine moiety is the key element for suitable interaction with the human histamine H3 receptor. While its structural replacement to piperidine is also tolerated for H3R binding, the heteroaromatic 4-pyridyl moiety seems to be essential for proper ligand-receptor interaction. The putative protein-ligand interactions responsible for their high affinity were demonstrated using molecular modeling techniques. Furthermore, selectivity, intrinsic activity at the H3R, as well as drug-like properties of ligands were evaluated using in vitro methods. Moreover, pharmacological in vivo test results of compound 9 (structural analogue of Abbott's A-331440) clearly indicate that it may affect the amount of calories consumed, thus act as an anorectic compound.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Histamine H3 Antagonists/chemical synthesis , Receptors, Histamine H3/metabolism , Animals , Anti-Obesity Agents/pharmacology , Body Weight , Dose-Response Relationship, Drug , Female , Histamine H3 Antagonists/pharmacology , Humans , Imidazoles/chemistry , Ligands , Models, Molecular , Piperazine/chemistry , Piperidines/chemistry , Protein Binding , Rats, Wistar , Regulatory Sequences, Nucleic Acid , Structure-Activity Relationship
9.
Curr Med Chem ; 28(15): 2974-2995, 2021.
Article in English | MEDLINE | ID: mdl-32767910

ABSTRACT

With the recent market approval of Pitolisant (Wakix®), the interest in clinical application for novel multifunctional histamine H3 receptor antagonists has clearly increased. Several combinations of different H3R pharmacophores with pharmacophoric elements of other G-protein coupled receptors, transporters, or enzymes have been synthesized by numerous pharmaceutical companies and academic institutions. Since central nervous system disorders are characterized by diverse physiological dysfunctions and deregulations of a complex network of signaling pathways, optimal multipotent drugs should simultaneously and peculiarly modulate selected groups of biological targets. Interestingly, very recent studies have shown that some clinically evaluated histamine H3 receptor antagonists possess a nanomolar affinity for sigma-1 receptor binding sites, suggesting that this property might play a role in their overall efficacy. The sigma-1 receptor, unusual and yet obscure protein, is supposed to be involved in numerous CNS pathologies through neuroprotection and neuroplasticity. These two different biological structures, histamine H3 and sigma-1 receptors, combined, can represent a potential fruitful target for therapeutic developments in tackling numerous human diseases.


Subject(s)
Central Nervous System Diseases , Receptors, Histamine H3 , Receptors, sigma , Central Nervous System Diseases/drug therapy , Histamine , Humans , Ligands , Sigma-1 Receptor
10.
Bioorg Med Chem Lett ; 30(22): 127522, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32871268

ABSTRACT

Taking into account that multidrug resistance (MDR) is the main cause for chemotherapeutic failure in cancer treatment, the ability of novel histamine H3 receptor ligands to reverse the cancer MDR was evaluated, using the ABCB1 efflux pump inhibition assay in mouse MDR T-lymphoma cells. The most active compounds displayed significant cytotoxic and antiproliferative effects as well as a very potent MDR efflux pump inhibitory action, 3-5-fold stronger than that of reference inhibitor verapamil. Although these compounds possess weak antagonistic properties against histamine H3 receptors, they are valuable pharmacological tools in the search for novel anticancer molecules. Furthermore, for the most active compounds, an insight into mechanisms of action using either, the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp, was performed.


Subject(s)
Drug Resistance, Multiple/drug effects , Histamine H3 Antagonists/pharmacology , Piperazine/pharmacology , Receptors, Histamine H3/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/chemistry , Humans , Mice , Molecular Structure , Piperazine/analogs & derivatives , Piperazine/chemistry , Structure-Activity Relationship
11.
ChemMedChem ; 15(9): 772-786, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32162782

ABSTRACT

Annelated purinedione derivatives have been shown to act as possible multiple-target ligands, addressing adenosine receptors and monoaminooxidases. In this study, based on our previous results, novel annelated pyrimido- and diazepino[2,1-f]purinedione derivatives were designed as dual-target-directed ligands combining A2A adenosine receptor (AR) antagonistic activity with blocking monoamine oxidase B. A library of 19 novel compounds was synthesized and biologically evaluated in radioligand binding studies at AR subtypes and for their ability to inhibit MAO-B. This allowed 9-(2-chloro-6-fluorobenzyl)-3-ethyl-1-methyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (13 e; Ki human A2A AR: 264 nM and IC50 human MAO-B: 243 nM) to be identified as the most potent dual-acting ligand from this series. ADMET parameters were estimated in vitro, and analysis of the structure-activity relationships was complemented by molecular-docking studies based on previously published X-ray structures of the protein targets. Such dual-acting ligands, by selectively blocking A2A AR, accompanied by the inhibition of dopamine metabolizing enzyme MAO-B, might provide symptomatic and neuroprotective effects in, among others, the treatment of Parkinson disease.


Subject(s)
Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neuroprotective Agents/pharmacology , Receptor, Adenosine A2A/metabolism , Xanthines/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Structure-Activity Relationship , Xanthines/chemical synthesis , Xanthines/chemistry
12.
J Comput Aided Mol Des ; 34(6): 697-707, 2020 06.
Article in English | MEDLINE | ID: mdl-32112287

ABSTRACT

Among still comparatively few G protein-coupled receptors, the adenosine A2A receptor has been co-crystallized with several ligands, agonists as well as antagonists. It can thus serve as a template with a well-described orthosteric ligand binding region for adenosine receptors. As not all subtypes have been crystallized yet, and in order to investigate the usability of homology models in this context, multiple adenosine A1 receptor (A1AR) homology models had been previously obtained and a library of lead-like compounds had been docked. As a result, a number of potent and one selective ligand toward the intended target have been identified. However, in in vitro experimental verification studies, many ligands also bound to the A2AAR and the A3AR subtypes. In this work we asked the question whether a classification of the ligands according to their selectivity was possible based on docking scores. Therefore, we built an A3AR homology model and docked all previously found ligands to all three receptor subtypes. As a metric, we employed an in vitro/in silico selectivity ranking system based on taxicab geometry and obtained a classification model with reasonable separation. In the next step, the method was validated with an external library of, selective ligands with similarly good performance. This classification system might also be useful in further screens.


Subject(s)
Protein Conformation , Receptor, Adenosine A1/chemistry , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A3/chemistry , Adenosine A1 Receptor Agonists/chemistry , Adenosine A1 Receptor Antagonists/chemistry , Binding Sites/drug effects , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding/drug effects , Protein Conformation/drug effects , Receptor, Adenosine A1/ultrastructure , Receptor, Adenosine A2A/ultrastructure , Receptor, Adenosine A3/ultrastructure , Structure-Activity Relationship
13.
Bioorg Chem ; 91: 103071, 2019 10.
Article in English | MEDLINE | ID: mdl-31362197

ABSTRACT

A novel series of 4-pyridylpiperazine derivatives with varying alkyl linker length and eastern part substituents proved to be potent histamine H3 receptor (hH3R) ligands in the nanomolar concentration range. While paying attention to their alkyl linker length, derivatives with a six methylene linker tend to be more potent than their five methylene homologues. Moreover, in the case of both phenoxyacetyl- and phenoxypropionyl- derivatives, an eight methylene linkers possess lower activity than their seven methylene homologues. However, in global analysis of collected data on the influence of alkyl linker length, a three methylene homologues appeared to be of highest hH3R affinity among all described 4-pyridylpiperazine derivatives from our group up to date. In the case of biphenyl and benzophenone derivatives, compounds with para- substituted second aromatic ring were of higher affinity than their meta analogues. Interestingly, benzophenone derivative 18 showed the highest affinity among all tested compounds (hH3R Ki = 3.12 nM). The likely protein-ligand interactions, responsible for their high affinity were demonstrated using molecular modeling techniques. Furthermore, selectivity, intrinsic activity at H3R, as well as drug-like properties of selected ligands were evaluated using in vitro methods.


Subject(s)
Piperazines/pharmacology , Receptors, Histamine H3/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Ligands , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship
14.
Biochem Pharmacol ; 168: 193-203, 2019 10.
Article in English | MEDLINE | ID: mdl-31295465

ABSTRACT

AIMS: Histamine H3 receptors ligands act anorectic by blocking the H3 autoreceptors in the CNS, that results in increased synthesis and disinhibition of histamine release. Histamine further influencing H1 receptors participates in the leptin-dependent inhibition of food intake. It also affects the peripheral metabolism by increasing white adipose tissue lipolysis. Thus, ligands such as KSK19 with significant antagonistic properties at the H3 receptor might serve as an useful treatment for obesity. MATERIALS AND METHODS: To induce obesity, female CD-1 mice were fed a high-fat diet for 14 weeks. The test compound at the doses of 10 or 15 mg/kg, i.p. was administrated for 21 days. Glucose and insulin tolerance tests was performed at the beginning of week 15. At the end of study, amount of intraperitoneal fat pads, AlAT, IL-6 and TNF-α plasma levels were determined. RESULTS: Animals fed with high-fat diet and treated with test compound at the dose of 15 mg/kg showed significantly less weight gain, than mice from the control group. The use of KSK19 for 21 days in obese mice also significantly improved glucose tolerance and insulin resistance. In the tested doses KSK19 did not affect locomotor activity neither in lean nor in obese mice after single i.p. administration, but spontaneous activity increased during three hour after twentieth administrations. CONCLUSION: KSK19 is a strong, selective histamine H3 receptor antagonist with a favorable influence on body weight after multiple administration at the dose of 15 mg/kg. Moreover it significantly improves glucose tolerance.


Subject(s)
Body Weight/drug effects , Diet, High-Fat/adverse effects , Histamine H3 Antagonists/pharmacology , Histamine H3 Antagonists/therapeutic use , Obesity/drug therapy , Obesity/etiology , Weight Gain/drug effects , Animals , Cell Survival/drug effects , Female , Glucose Tolerance Test , Hep G2 Cells , Histamine H3 Antagonists/administration & dosage , Humans , Inhibitory Concentration 50 , Insulin Resistance , Ligands , Locomotion/drug effects , Mice , Mice, Obese , Receptors, Histamine H3/metabolism
15.
Bioorg Med Chem ; 26(23-24): 6056-6066, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30448256

ABSTRACT

As a continuation of our search for novel histamine H3 receptor ligands, a series of new acetyl and propionyl phenoxyalkylamine derivatives (2-25) was synthesized. Compounds with three to four carbon atoms alkyl chain spacer, composed of six various 4N-substituted piperazine moieties were evaluated for their binding properties at human histamine H3 receptors (hH3R). In vitro test results proved the 4-pyridylpiperazine moiety as crucial element for high hH3R affinity (hH3R Ki = 5.2-115 nM). Moreover introduction of carbonyl group containing residues in the lipophilic part of molecules instead of branched alkyl substituents resulted in increased affinity in correlation to previously described series, whereas propionyl derivatives showed slightly higher affinities than those of acetyl (16 and 22vs.4 and 10; hH3R Ki = 5.2 and 15.4 nM vs. 10.2 and 115 nM, respectively). These findings were confirmed by molecular modelling studies, demonstrating multiple ligand-receptor interactions. Furthermore, pharmacological in vivo test results of compound 4 clearly indicate that it may affect the amount of calories consumed, thus act as an anorectic compound. Likewise, its protective action against hyperglycemia and the development of overweight has been shown. In order to estimate drug-likeness of compound 4, in silico and experimental evaluation of metabolic stability in human liver microsomes was performed.


Subject(s)
Antineoplastic Agents/pharmacology , Histamine H3 Antagonists/pharmacology , Piperazine/pharmacology , Receptors, Histamine H3/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Body Weight/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/chemistry , Humans , Ligands , Male , Mice , Models, Molecular , Molecular Structure , Piperazine/chemical synthesis , Piperazine/chemistry , Rats , Structure-Activity Relationship
16.
Naunyn Schmiedebergs Arch Pharmacol ; 391(8): 875-881, 2018 08.
Article in English | MEDLINE | ID: mdl-29802412

ABSTRACT

The pharmacological profile of pitolisant, a histamine H3 receptor antagonist/inverse agonist, indicates that this compound might reduce body weight and metabolic disturbances. Therefore, we studied the influence of pitolisant on body weight, water and sucrose intake as well as metabolic disturbances in the high-fat and high-sugar diet-induced obesity model in mice. To induce obesity, male CD-1 mice were fed a high-fat diet consisting of 40% fat blend for 14 weeks, water and 30% sucrose solution available ad libitum. Glucose tolerance test was performed at the beginning of week 15. Insulin tolerance was tested the day after. At the end of study, plasma levels of triglycerides and cholesterol were determined. Pitolisant at dose of 10 mg/kg bw (ip) was administrated during 14 days, starting from the beginning of week 13. Metformin at dose of 100 mg/kg bw (ip) was used as reference drug. Mice fed with high-fat diet and sucrose solution showed more weight gain throughout the 12-week period of inducing obesity. Animals fed with high-fat diet and treated with pitolisant (for the next 14 days) showed significantly less weight gain than mice from the control group consuming a high-fat feed. In the group treated with pitolisant, glucose levels were significantly lower than glucose levels of control obese mice after glucose load. The plasma triglyceride levels in pitolisant-treated mice were significantly lower compared with those in control obese group. In conclusion, pitolisant has a favorable influence of body weight and improves glucose tolerance and the lipid profile in obese mice.


Subject(s)
Anti-Obesity Agents/therapeutic use , Histamine Agonists/therapeutic use , Obesity/drug therapy , Piperidines/therapeutic use , Animals , Blood Glucose/analysis , Body Weight/drug effects , Cholesterol/blood , Diet, High-Fat , Histamine H3 Antagonists/therapeutic use , Male , Mice , Obesity/blood , Sucrose/administration & dosage , Triglycerides/blood
17.
Eur J Med Chem ; 152: 223-234, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29723785

ABSTRACT

As a continuation of our search for novel histamine H3 receptor ligands, a series of twenty four new tert-butyl and tert-pentyl phenoxyalkylamine derivatives (2-25) was synthesized. Compounds with three to four carbon atoms alkyl chain spacer were evaluated for their binding properties at human histamine H3 receptor (hH3R). The highest affinities were observed for 4-pyridyl derivatives 4, 10, 16 and 22 (Ki = 16.0-120 nM). As it has been shown in docking studies, those specific heteroaromatic 4-N piperazine substituents might interact with one of the key receptor interacting amino acids. Moreover, the most promising compounds exhibited anticonvulsant activity in the maximal electroshock-induced seizure (MES) model in mice. Furthermore, the blood-brain barrier penetration, the functional H3R antagonist potency as well as the pro-cognitive properties in the passive avoidance test were demonstrated for compound 10. In order to estimate drug-likeness of compound 10,in silico and experimental evaluation of metabolic stability in human liver microsomes was performed. In addition, paying attention to the results obtained within this study, the 4-pyridyl-piperazino moiety has been established as a new bioisosteric piperidine replacement in H3R ligands.


Subject(s)
Histamine H3 Antagonists/pharmacology , Piperazines/pharmacology , Receptors, Histamine H3/metabolism , Seizures/drug therapy , Animals , Dose-Response Relationship, Drug , Electroshock , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/chemistry , Humans , Ligands , Male , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Piperazine , Piperazines/chemical synthesis , Piperazines/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship
18.
Bioorg Med Chem ; 25(10): 2701-2712, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28372935

ABSTRACT

As a continuation of our search for novel histamine H3 receptor ligands a series of twenty new tert-amyl phenoxyalkylamine derivatives (2-21) was synthesized. Compounds of four to eight carbon atoms spacer alkyl chain were evaluated on their binding properties at human histamine H3 receptor (hH3R). The highest affinities were observed for pentyl derivatives 6-8 (Ki=8.8-23.4nM range) and among them piperidine derivative 6 with Ki=8.8nM. Structures 6, 7 were also classified as antagonists in cAMP accumulation assay (with EC50=157 and 164nM, respectively). Moreover, new compounds were also evaluated for anticonvulsant activity in Antiepileptic Screening Program (ASP) at National Institute of Neurological Disorders and Stroke (USA). Seven compounds (2-4, 9, 11, 12 and 20) showed anticonvulsant activity at maximal electroshock (MES) test in the dose of 30mg/kg at 0.5h. In the subcutaneous pentetrazole (scMET) test compound 4 showed protection at 100 and 300mg/kg dose at mice, however compounds showed high neurotoxicity in rotarod test at used doses. Also, molecular modeling studies were undertaken, to explain affinity of compounds at hH3R (taking into the consideration X-ray analysis of compound 18). In order to estimate "drug-likeness" of selected compounds in silico and experimental evaluation of lipophilicity, metabolic stability and cytotoxicity was performed.


Subject(s)
Anticonvulsants/chemical synthesis , Histamine H3 Antagonists/chemical synthesis , Piperidines/chemistry , Receptors, Histamine H3/chemistry , Animals , Anticonvulsants/metabolism , Anticonvulsants/toxicity , Binding Sites , Cell Line , Cell Proliferation/drug effects , Electroshock , HEK293 Cells , Histamine H3 Antagonists/metabolism , Histamine H3 Antagonists/toxicity , Humans , Male , Mice , Molecular Docking Simulation , Neurons/drug effects , Piperidines/metabolism , Piperidines/toxicity , Protein Binding , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Receptors, Histamine H3/metabolism , Solubility
19.
Curr Med Chem ; 21(34): 3962-75, 2014.
Article in English | MEDLINE | ID: mdl-25174921

ABSTRACT

The robust of fluorescent techniques to study the ligand-receptor interaction followed by rapidly developing fluorescence imaging techniques resulted in a burst of the novel fluorescent ligands development. Taking into consideration not only ligand's high affinity to the receptor, but also their fluorescent properties to visualize the interaction even in the single cell level, gives the researchers a strong impulse to investigate that field of GPCR ligands. Moreover, paying attention to the "non pharmacological" advantages of these ligands, as well as the techniques to be used, fluorescent ligands become commonly used pharmacological tools to study GPCRs. Herein we report on the results described in the literature since late 2007 in the field of the fluorescent GPCR small, non-peptide ligands according the receptor affinity, fluorophores that has been used to tag the molecules and their fluorescent properties as well as their application in GPCR research.


Subject(s)
Fluorescent Dyes/chemistry , Receptors, G-Protein-Coupled/therapeutic use , History, 21st Century , Humans , Ligands , Receptors, G-Protein-Coupled/metabolism
20.
Med Chem ; 10(6): 588-99, 2014.
Article in English | MEDLINE | ID: mdl-24047214

ABSTRACT

The search for novel lead from the group of various substituted N-piperazine ether derivatives was performed. Acyl- and pyridylpiperazine ethyl/propyl ethers were obtained via three different synthetic pathways. Affinity to histamine H3 receptor was established, as well as, for selected compounds, selectivity towards histamine H4R. Docking studies to the histamine H3R homology model strengthened the position of (4-(3-(4-(3-chlorobenzoyl)piperazin-1- yl)propoxy)phenyl)(cyclopropyl)methanone (compound 26) as a novel lead for further studies on histamine H3 receptor antagonist/inverse agonist.


Subject(s)
Drug Discovery/methods , Histamine Agonists/chemical synthesis , Histamine H3 Antagonists/chemical synthesis , Piperazines/chemical synthesis , Receptors, Histamine H3/chemistry , Animals , Binding Sites , Binding, Competitive , CHO Cells , Cricetulus , Ethers , Histamine Agonists/chemistry , Histamine Agonists/pharmacology , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Ligands , Molecular Docking Simulation , Molecular Structure , Piperazines/chemistry , Piperazines/pharmacology , Radioligand Assay , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine/chemistry , Receptors, Histamine/metabolism , Receptors, Histamine H3/genetics , Receptors, Histamine H4
SELECTION OF CITATIONS
SEARCH DETAIL
...