Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 113(49): 15928-36, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19919026

ABSTRACT

An optical spectroscopy and photophysics study on four (oligo)thiophene-phenylene and (oligo)thiophene-naphthylene step-ladder type copolymers in solution (room and low temperature) and in the solid state (thin film) is presented. The study involves absorption, emission, and triplet-singlet difference spectra, together with quantitative measurements of quantum yields (fluorescence, intersystem crossing, internal conversion, and singlet oxygen formation), excited-state lifetimes, and singlet and triplet energies. The overall data allow for a determination of the rate constants for all decay processes and from these several conclusions could be drawn: (1) in solution the main deactivation channels are radiationless processes (S(1) approximately -->S(0) internal conversion and S(1) approximately -->T(1) intersystem crossing); (2) from time-resolved fluorescence decays in the picosecond time domain three decay components are seen: a fast decay (10-20 ps) at short wavelengths, which becomes a rising component at longer wavelengths, an intermediate decay component (120-190 ps) most probably associated to isolated conjugated segments, and a third exponential related to the emission of the fully relaxed polymer. The assignment of the fast decay component to an on-chain energy transfer/migration is based of the dependence of the decay time on the solvent viscosity in combination with the investigation of an oligomeric model compound. Here, the absence of any significant changes of the decay parameters (decay times and pre-exponential factors) upon going from a less (toluene) to a more viscous (decalin) solvent together with the monoexponential fluorescence decay of the oligomeric model compound allow us to differentiate between deactivation of the singlet excited state by conformational relaxation and on-chain energy/transfer migration.

2.
J Phys Chem B ; 112(4): 1104-11, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18181606

ABSTRACT

A comprehensive study has been undertaken of the electronic spectral and photophysical properties of two oligophenyl (BPH and BPHF) and one oligothienyl (BTF) swivel cruciforms involving measurements of absorption, fluorescence, and phosphorescence spectra, quantum yields of fluorescence (phiF), phosphorescence (phiPh) and triplet formation (phiT), lifetimes of fluorescence (tauF) and of the triplet state (tauT), and quantum yields of singlet oxygen production (phiDelta). From these, all radiative kF and radiationless rate constants, kIC and kISC, have been obtained in solution. The energies of the lowest lying singlet and triplet excited states were also determined at 293 K. Several of the above properties have also been obtained at low temperature and in the solid state (thin films). In general, for the phenyl oligophenyl (BPH) and for the oligothienyl (BTF) compounds, the radiationless decay channels (phiIC+phiISC) are the dominant pathway for the excited-state deactivation, whereas with the fluorene based oligophenyl BPHF the radiative route prevails. In contrast to the general rule found for related oligomers (and polymers) where radiative emission from T1 is absent, with the compounds studied, phosphorescence has been observed for all of the compounds, indicating that this type of functionalization can lead to emissive triplets. Time-resolved fluorescence decays with picosecond resolution revealed multiexponential (bi- and triexponential) decay laws compatible with the existence of more than one species or conformation in the excited state. These results are discussed on the basis of conformational flexibility in the excited state.

3.
Toxicology ; 82(1-3): 169-89, 1993 Oct 05.
Article in English | MEDLINE | ID: mdl-8236273

ABSTRACT

V79 Chinese hamster cells genetically engineered for stable expression of single forms of rat cytochromes P450IA1, P450IA2, P450IIB1, human P450IA2, and rat liver epithelial cells expressing murine P450IA2 were used to allocate metabolic pathways of methylxanthines to specific isoforms and to test the suitability of such cell lines for investigations on drug interactions occurring at the cytochrome expressed. The cell lines were exposed to caffeine and/or theophylline and concentrations of metabolites formed in the medium were determined by HPLC. Caffeine was metabolized by human, rat and murine P450IA2, resulting in the formation of four primary demethylated and hydroxylated metabolites. However, there were differences in the relative amounts of the metabolites. The human and the mouse P450IA2 isoforms predominantly mediated 3-demethylation of caffeine. The rat cytochrome P450IA2 mediated both 3-demethylation and 1-demethylation of caffeine to a similar extent. The results support the hypothesis that caffeine plasma clearance is a specific in vivo probe for determining human P450IA2 activity. Addition of the quinolone antibiotic agents pipemidic acid or pefloxacin, both known to inhibit caffeine metabolism in vivo and in human liver microsomes, reduced formation rates of all metabolites of caffeine in cells expressing rat and human P450IA2. Theophylline was mainly metabolized via 8-hydroxylation. All cell lines tested were able to carry out this reaction, with highest activities in cell lines expressing rat or human P450IA2, or rat P450IA1.


Subject(s)
Caffeine/metabolism , Cytochrome P-450 Enzyme System/genetics , Isoenzymes/genetics , Quinolines/pharmacology , Animals , Biotransformation/drug effects , Cell Line , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , Cytochrome P-450 Enzyme System/metabolism , Humans , Isoenzymes/metabolism , Pefloxacin/pharmacology , Pipemidic Acid/pharmacology , Rats
4.
Biochem Pharmacol ; 43(2): 225-35, 1992 Jan 22.
Article in English | MEDLINE | ID: mdl-1739411

ABSTRACT

Primary steps in the metabolism of caffeine and theophylline are cleavage of methyl groups and/or hydroxylation at position 8, mediated by cytochromes P450. V79 Chinese hamster cells genetically engineered for stable expression of single forms of rat cytochromes P450IA1, P450IA2 and P450IIBI and human P450IA2 and rat liver epithelial cells expressing murine P450IA2 were used to overcome problems arising in the proper allocation of metabolic pathways to specific isoforms by conventional techniques. These cell lines were exposed to caffeine and/or theophylline, and concentrations of metabolites formed in the medium were determined by HPLC. Caffeine was metabolized by human, rat and murine P450IA2, resulting in the formation of four primary demethylated and hydroxylated metabolites. However, there were differences in the relative amounts of the metabolites. The human and the mouse P450IA2 isoforms predominantly mediated 3-demethylation of caffeine. The rat cytochrome P450IA2 mediated both 3-demethylation and 1-demethylation of caffeine to a similar extent. Theophylline was metabolized mainly via 8-hydroxylation. All cell lines tested were able to carry out this reaction, with highest activities in cell lines expressing rat or human P450IA2, or rat P450IA1. These results support the hypothesis that caffeine plasma clearance is a specific in vivo probe for determining human P450IA2 activity.


Subject(s)
Caffeine/metabolism , Cytochrome P-450 Enzyme System/metabolism , Theophylline/metabolism , Animals , Biotransformation , Cell Line/enzymology , Chromatography, High Pressure Liquid , Cricetinae , Cytochrome P-450 Enzyme System/genetics , Genetic Engineering , Humans , Hydroxylation , Methylation , Mice , Rats , Species Specificity , Xanthines/isolation & purification , Xanthines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...