Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(1)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37403857

ABSTRACT

Hybrid ferromagnet-semiconductor systems possess new outstanding properties, which emerge when bringing magnetic and semiconductor materials into contact. In such structures, the long-range magnetic proximity effect couples the spin systems of the ferromagnet and semiconductor on distances exceeding the carrier wave function overlap. The effect is due to the effective p-d exchange interaction of acceptor-bound holes in the quantum well with d-electrons of the ferromagnet. This indirect interaction is established via the phononic Stark effect mediated by the chiral phonons. Here, we demonstrate that the long-range magnetic proximity effect is universal and observed in hybrid structures with diverse magnetic components and potential barriers of various thicknesses and compositions. We study hybrid structures consisting of a semimetal (magnetite Fe3O4) or dielectric (spinel NiFe2O4) ferromagnet and a CdTe quantum well separated by a nonmagnetic (Cd,Mg)Te barrier. The proximity effect is manifested in the circular polarization of the photoluminescence corresponding to the recombination of photoexcited electrons with holes bound to shallow acceptors in the quantum well induced by magnetite or spinel itself, in contrast to interface ferromagnet in case of metal-based hybrid systems. A nontrivial dynamics of the proximity effect is observed in the studied structures due to recombination-induced dynamic polarization of electrons in the quantum well. It enables the determination of the exchange constant Δexch ≈ 70 µeV in a magnetite-based structure. The universal origin of the long-range exchange interaction along with the possibility of its electrical control offers prospects for the development of low-voltage spintronic devices compatible with existing solid-state electronics.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36839097

ABSTRACT

Exciton recombination and spin dynamics in (In,Al)As/AlAs quantum dots (QDs) with indirect band gap and type-I band alignment were studied. The negligible (less than 0.2 µeV) value of the anisotropic exchange interaction in these QDs prevents the mixing of the excitonic basis states and makes the formation of spin-polarized bright excitons possible under quasi-resonant, circularly polarized excitation. The recombination and spin dynamics of excitons are controlled by the hyperfine interaction between the electron and nuclear spins. A QD blockade by dark excitons was observed in the magnetic field, that eliminates the impact of nuclear spin fluctuations. A kinetic model which accounts for the population dynamics of the bright and dark exciton states as well as for the spin dynamics was developed to quantitatively describe the experimental data.

3.
Nat Commun ; 13(1): 3062, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35654813

ABSTRACT

The Landé or g-factors of charge carriers are decisive for the spin-dependent phenomena in solids and provide also information about the underlying electronic band structure. We present a comprehensive set of experimental data for values and anisotropies of the electron and hole Landé factors in hybrid organic-inorganic (MAPbI3, MAPb(Br0.5Cl0.5)3, MAPb(Br0.05Cl0.95)3, FAPbBr3, FA0.9Cs0.1PbI2.8Br0.2, MA=methylammonium and FA=formamidinium) and all-inorganic (CsPbBr3) lead halide perovskites, determined by pump-probe Kerr rotation and spin-flip Raman scattering in magnetic fields up to 10 T at cryogenic temperatures. Further, we use first-principles density functional theory (DFT) calculations in combination with tight-binding and k ⋅ p approaches to calculate microscopically the Landé factors. The results demonstrate their universal dependence on the band gap energy across the different perovskite material classes, which can be summarized in a universal semi-phenomenological expression, in good agreement with experiment.

4.
Nat Commun ; 10(1): 2899, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31263145

ABSTRACT

Voltage control of ferromagnetism on the nanometer scale is highly appealing for the development of novel electronic devices with low power consumption, high operation speed, reliable reversibility and compatibility with semiconductor technology. Hybrid structures based on the assembly of ferromagnetic and semiconducting building blocks are expected to show magnetic order as a ferromagnet and to be electrically tunable as a semiconductor. Here, we demonstrate the electrical control of the exchange coupling in a hybrid consisting of a ferromagnetic Co layer and a semiconductor CdTe quantum well, separated by a thin non-magnetic (Cd,Mg)Te barrier. The electric field controls the phononic ac Stark effect-the indirect exchange mechanism that is mediated by elliptically polarized phonons emitted from the ferromagnet. The effective magnetic field of the exchange interaction reaches up to 2.5 Tesla and can be turned on and off by application of 1V bias across the heterostructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...