Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry (Mosc) ; 88(12): 2023-2042, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38462447

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of ß-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of ß-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Serotonin , Amyloid beta-Peptides/metabolism , Receptors, Serotonin/therapeutic use
2.
Heliyon ; 6(3): e03586, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32211550

ABSTRACT

Expression of interleukins and their receptors is often regulated by alternative splicing. Alternative isoform of IL-5 receptor α-chain is well studied; however, no data on functional alternative splice variants of IL-5 has been reported up today. In the present study, we describe a novel splice variant for the mouse and human IL-5. The new form was found during analysis of PCR-products amplified from different mouse lymphoid tissues with a pair of primers designed to clone full-length mIL-5 ORF. A single short isoform of mIL-5 was detected along with the canonical full-length mRNA in ConA-stimulated lymphoid cells isolated from spleen, thymus, lymph nodes and blood. It was 30-40 nt shorter, and less abundant than classical form. The sequence analysis of an additional form of mIL-5 revealed that it lacks exon-2 (δ2). Using RT-PCR with the splice-specific primers we obtained an additional evidence for δ2 form expression. To verify whether mIL-5δ2 transcript is translated into protein, the coding sequences corresponding to full and δ2 forms of mIL-5 were cloned into an expression plasmid. After transfection into the human 293T cell line, we found that the short form of mIL-5 protein is expressed in cells and secreted into the supernatant, but at the reduced level than that detected for full isoform of mIL-5. Fluorescence microscopy examination revealed a partial translocation of mIL-5δ2 into cytoplasm, whereas mIL-5 resided mostly within endoplasmic reticulum. This can explain why the level of δ2 protein expression was reduced. Using a similar set of experimental approaches, we received the evidence that the human IL-5 mRNA has the δ2 splice form (hIL-5δ2) as well. It can be firmly detected by RT-PCR in PHA-activated mononuclear cells isolated from peripheral blood of healthy persons or patients with asthma. Altogether, our results showed that the human and mouse IL-5 have an alternative mRNA splice isoform, which loses exon-2, but nevertheless is expressed at protein level. However, more comprehensive studies will be required for evaluation of IL-5δ2 expression, regulation, biological function and clinical significance.

SELECTION OF CITATIONS
SEARCH DETAIL
...