Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
2.
Neurosurg Rev ; 47(1): 200, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722409

ABSTRACT

Appropriate needle manipulation to avoid abrupt deformation of fragile vessels is a critical determinant of the success of microvascular anastomosis. However, no study has yet evaluated the area changes in surgical objects using surgical videos. The present study therefore aimed to develop a deep learning-based semantic segmentation algorithm to assess the area change of vessels during microvascular anastomosis for objective surgical skill assessment with regard to the "respect for tissue." The semantic segmentation algorithm was trained based on a ResNet-50 network using microvascular end-to-side anastomosis training videos with artificial blood vessels. Using the created model, video parameters during a single stitch completion task, including the coefficient of variation of vessel area (CV-VA), relative change in vessel area per unit time (ΔVA), and the number of tissue deformation errors (TDE), as defined by a ΔVA threshold, were compared between expert and novice surgeons. A high validation accuracy (99.1%) and Intersection over Union (0.93) were obtained for the auto-segmentation model. During the single-stitch task, the expert surgeons displayed lower values of CV-VA (p < 0.05) and ΔVA (p < 0.05). Additionally, experts committed significantly fewer TDEs than novices (p < 0.05), and completed the task in a shorter time (p < 0.01). Receiver operating curve analyses indicated relatively strong discriminative capabilities for each video parameter and task completion time, while the combined use of the task completion time and video parameters demonstrated complete discriminative power between experts and novices. In conclusion, the assessment of changes in the vessel area during microvascular anastomosis using a deep learning-based semantic segmentation algorithm is presented as a novel concept for evaluating microsurgical performance. This will be useful in future computer-aided devices to enhance surgical education and patient safety.


Subject(s)
Algorithms , Anastomosis, Surgical , Deep Learning , Humans , Anastomosis, Surgical/methods , Pilot Projects , Microsurgery/methods , Microsurgery/education , Needles , Clinical Competence , Semantics , Vascular Surgical Procedures/methods , Vascular Surgical Procedures/education
3.
Ann Nucl Med ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656630

ABSTRACT

OBJECTIVE: To investigate the incidence of adverse events (AEs) following single and multiple administrations of I-131 metaiodobenzylguanidine (MIBG) therapy for inoperable pheochromocytomas and paragangliomas (PPGLs). METHODS: A single-center retrospective study was conducted on patients with inoperable PPGLs who underwent I-131 MIBG therapy between January 2000 and December 2020. A total of 28 patients with available electronic medical records were included. The treatment consisted of a single intravenous administration of 150 mCi (5.55 GBq) of I-131 MIBG. We evaluated the first MIBG treatment and repeated MIBG treatments performed within 200 days of the previous treatment. AEs for each treatment were evaluated using CTCAE version 4.0, and the statistical analysis was conducted at a significance level of p < 0.05. Objective response based on RECIST 1.1 criteria and biochemical response based on urinary catecholamines were assessed. RESULTS: The study included a total of 63 administrations, consisting of 28 single administrations (SAs), including the first administration for all 28 cases, and 35 multiple administrations (MAs), which included the second or later administrations. Hematological AEs were evaluable for 23 SAs and 29 MAs. Grade 3 or higher leukopenia occurred in 9.8% of all administrations, and Grade 3 or higher lymphopenia in 23.5%; both were manageable through observation. There were no significant differences in clinical AE Grades 1-2 (p = 0.32), hematological AE Grades 1-2 (p = 0.22), or hematological AE Grades 3-4 (p = 0.12) between MAs and SAs. Statistical analysis for each type of AE revealed significant increases in leukopenia (p < 0.01) and lymphopenia (p = 0.04). No significant difference in anemia, thrombocytopenia, or neutropenia was observed between MAs and SAs. There was no significant increase in the incidence rate of Grade 3 or higher hematological AEs for any of the parameters. The objective response rate was 0% for SAs and 36% for MAs. Biochemical response rates were 18% for SAs and 67% for MAs. CONCLUSION: In I-131 MIBG therapy for PPGLs, multiple administrations significantly increased only Grade 1 or 2 lymphopenia and leukopenia compared to single administration.

5.
Magn Reson Med Sci ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38556273

ABSTRACT

PURPOSE: Prolonged scanning of time-resolved 3D phase-contrast MRI (4D flow MRI) limits its routine use in clinical practice. An echo-planar imaging (EPI)-based sequence and compressed sensing can reduce the scan duration. We aimed to determine the impact of EPI for 4D flow MRI on the scan duration, image quality, and quantitative flow metrics. METHODS: This was a prospective study of 15 healthy volunteers (all male, mean age 33 ± 5 years). Conventional sensitivity encoding (SENSE), EPI with SENSE (EPI), and compressed SENSE (CS) (reduction factors: 6 and 12, respectively) were scanned.Scan duration, qualitative indexes of image quality, and quantitative flow parameters of net flow volume, maximum flow velocity, wall shear stress (WSS), and energy loss (EL) in the ascending aorta were assessed. Two-dimensional phase-contrast cine MRI (2D-PC) was considered the gold standard of net flow volume and maximum flow velocity. RESULTS: Compared to SENSE, EPI and CS12 shortened scan durations by 71% and 73% (EPI, 4 min 39 sec; CS6, 7 min 29 sec; CS12, 4 min 14 sec; and SENSE, 15 min 51 sec). Visual image quality was significantly better for EPI than for SENSE and CS (P < 0.001). The net flow volumes obtained with SENSE, EPI, and CS12 and those obtained with 2D-PC were correlated well (r = 0.950, 0.871, and 0.850, respectively). However, the maximum velocity obtained with EPI was significantly underestimated (P < 0.010). The average WSS was significantly higher with EPI than with SENSE, CS6, and CS12 (P < 0.001, P = 0.040, and P = 0.012, respectively). The EL was significantly lower with EPI than with CS6 and CS12 (P = 0.002 and P = 0.007, respectively). CONCLUSION: EPI reduced the scan duration, improved visual image quality, and was associated with more accurate net flow volume than CS. However, the flow velocity, WSS, and EL values obtained with EPI and other sequences may not be directly comparable.

6.
Magn Reson Med Sci ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38494701

ABSTRACT

17O-labeled water is a T2-shortening contrast agent used in proton MRI and is a promising method for visualizing cerebrospinal fluid (CSF) dynamics because it provides long-term tracking of water molecules. However, various external factors reduce the accuracy of 17O-concentration measurements using conventional signal-intensity-based methods. In addition, T2 mapping, which is expected to provide a stable assessment, is generally limited to temporal-spatial resolution. We developed the T2-prepared based on T2 mapping used in cardiac imaging to adapt to long T2 values and tested whether it could accurately measure 17O-concentration in the CSF using a phantom. The results showed that 17O-concentration in a fluid mimicking CSF could be evaluated with an accuracy comparable to conventional T2-mapping (Carr-Purcell-Meiboom-Gill multi-echo spin-echo method). This method allows 17O-imaging with a high temporal resolution and stability in proton MRI. This imaging technique may be promising for visualizing CSF dynamics using 17O-labeled water.

7.
Magn Reson Med Sci ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38494702

ABSTRACT

PURPOSE: We present a novel algorithm for the automated detection of cerebral microbleeds (CMBs) on 2D gradient-recalled echo T2* weighted images (T2*WIs). This approach combines a morphology filter bank with a convolutional neural network (CNN) to improve the efficiency of CMB detection. A technical evaluation was performed to ascertain the algorithm's accuracy. METHODS: In this retrospective study, 60 patients with CMBs on T2*WIs were included. The gold standard was set by three neuroradiologists based on the Microbleed Anatomic Rating Scale guidelines. Images with CMBs were extracted from the training dataset comprising 30 cases using a morphology filter bank, and false positives (FPs) were removed based on the threshold of size and signal intensity. The extracted images were used to train the CNN (Vgg16). To determine the effectiveness of the morphology filter bank, the outcomes of the following two methods for detecting CMBs from the 30-case test dataset were compared: (a) employing the morphology filter bank and additional FP removal and (b) comprehensive detection without filters. The trained CNN processed both sets of initial CMB candidates, and the final CMB candidates were compared with the gold standard. The sensitivity and FPs per patient of both methods were compared. RESULTS: After CNN processing, the morphology-filter-bank-based method had a 95.0% sensitivity with 4.37 FPs per patient. In contrast, the comprehensive method had a 97.5% sensitivity with 25.87 FPs per patient. CONCLUSION: Through effective CMB candidate refinement with a morphology filter bank and FP removal with a CNN, we achieved a high CMB detection rate and low FP count. Combining a CNN and morphology filter bank may facilitate the accurate automated detection of CMBs on T2*WIs.

8.
Med ; 5(5): 432-444.e4, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38547868

ABSTRACT

BACKGROUND: Ischemic stroke is one of the leading causes of death and neurological disability worldwide, and stem cell therapy is highly expected to reverse the sequelae. This phase 1/2, first-in-human study evaluated the safety, feasibility, and monitoring of an intracerebral-transplanted magnetic resonance imaging (MRI)-trackable autologous bone marrow stromal cell (HUNS001-01) for patients with subacute ischemic stroke. METHODS: The study included adults with severe disability due to ischemic stroke. HUNS001-01 cultured with human platelet lysates and labeled with superparamagnetic iron oxide was stereotactically transplanted into the peri-infarct area 47-64 days after ischemic stroke onset (dose: 2 or 5 × 107 cells). Neurological and radiographic evaluations were performed throughout 1 year after cell transplantation. The trial was registered at UMIN Clinical Trial Registry (number UMIN000026130). FINDINGS: All seven patients who met the inclusion criteria successfully achieved cell expansion, underwent intracerebral transplantation, and completed 1 year of follow-up. No product-related adverse events were observed. The median National Institutes of Health Stroke Scale and modified Rankin scale scores before transplantation were 13 and 4, which showed improvements of 1-8 and 0-2, respectively. Cell tracking proved that the engrafted cells migrated toward the infarction border area 1-6 months after transplantation, and the quantitative susceptibility mapping revealed that cell signals at the migrated area constantly increased throughout the follow-up period up to 34% of that of the initial transplanted site. CONCLUSIONS: Intracerebral transplantation of HUNS001-01 was safe and well tolerated. Cell tracking shed light on the therapeutic mechanisms of intracerebral transplantation. FUNDING: This work was supported by the Japan Agency for Medical Research and Development (AMED; JP17bk0104045 and JP20bk0104011).


Subject(s)
Ischemic Stroke , Magnetic Resonance Imaging , Humans , Male , Middle Aged , Female , Aged , Ischemic Stroke/therapy , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/surgery , Transplantation, Autologous/methods , Mesenchymal Stem Cell Transplantation/methods , Treatment Outcome , Adult , Feasibility Studies
10.
Cureus ; 16(2): e54203, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38371431

ABSTRACT

Purpose This study aimed to compare the image quality between echo planar imaging (EPI) with compressed sensing-sensitivity encoding (EPICS)-based diffusion-weighted imaging (DWI) and conventional parallel imaging (PI)-based DWI of the head and neck. Materials and methods Ten healthy volunteers participated in this study. EPICS-DWI was acquired based on an axial spin-echo EPI sequence with EPICS acceleration factors of 2, 3, and 4, respectively. Conventional PI-DWI was acquired using the same acceleration factors (i.e., 2, 3, and 4). Quantitative assessment was performed by measuring the signal-to-noise ratio (SNR) and apparent diffusion coefficient (ADC) in a circular region of interest (ROI) on the parotid and submandibular glands. For qualitative evaluation, a three-point visual grading system was used to assess the (1) overall image quality and (2) degree of image distortion. Results In the quantitative assessment, the SNR of the parotid gland in EPICS-DWI was significantly higher than that of PI-DWI in acceleration factors of 3 and 4 (p<0.05). In a comparison of ADC values, significant differences were not observed between EPICS-DWI and PI-DWI. In the qualitative assessment, the overall image quality of EPICS-DWI was significantly higher than that of PI-DWI for acceleration factors 3 and 4 (p<0.05). The degree of image distortion was significantly larger in EPICS-DWI with an acceleration factor of 2 than that of 3 or 4 (p<0.01, respectively). Conclusion Under the appropriate parameter setting, EPICS-DWI demonstrated higher SNR and better overall image quality for head and neck imaging than PI-DWI, without increasing image distortion.

11.
Methods Mol Biol ; 2755: 133-140, 2024.
Article in English | MEDLINE | ID: mdl-38319574

ABSTRACT

Tumor hypoxia is an essential factor related to malignancy, prognosis, and resistance to treatment. Positron emission tomography (PET) is a modality that visualizes the distribution of radiopharmaceuticals administered into the body. PET imaging with [18F]fluoromisonidazole ([18F]FMISO) identifies hypoxic tissues. Unlike [18F]fluorodeoxyglucose ([18F]FDG)-PET, fasting is not necessary for [18F]FMISO-PET, but the waiting time from injection to image acquisition needs to be relatively long (e.g., 2-4 h). [18F]FMISO-PET images can be displayed on an ordinary commercial viewer on a personal computer (PC). While visual assessment is fundamental, various quantitative indices such as tumor-to-muscle ratio have also been proposed. Several novel hypoxia tracers have been invented to compensate for the limitations of [18F]FMISO.


Subject(s)
Misonidazole , Positron-Emission Tomography , Humans , Fasting , Fluorodeoxyglucose F18 , Hypoxia/diagnostic imaging
12.
Magn Reson Imaging ; 108: 111-115, 2024 May.
Article in English | MEDLINE | ID: mdl-38340971

ABSTRACT

PURPOSE: To assess the utility of deep learning (DL)-based image reconstruction with the combination of compressed sensing (CS) denoising cycle by comparing images reconstructed by conventional CS-based method without DL in fat-suppressed (Fs)-contrast enhanced (CE) three-dimensional (3D) T1-weighted images (T1WIs) of the head and neck. MATERIALS AND METHODS: We retrospectively analyzed the cases of 39 patients who had undergone head and neck Fs-CE 3D T1WI applying reconstructions based on conventional CS and CS augmented by DL, respectively. In the qualitative assessment, we evaluated overall image quality, visualization of anatomical structures, degree of artifacts, lesion conspicuity, and lesion edge sharpness based on a five-point system. In the quantitative assessment, we calculated the signal-to-noise ratios (SNRs) of the lesion and the posterior neck muscle and the contrast-to-noise ratio (CNR) between the lesion and the adjacent muscle. RESULTS: For all items of the qualitative analysis, significantly higher scores were awarded to images with DL-based reconstruction (p < 0.001). In the quantitative analysis, DL-based reconstruction resulted in significantly higher values for both the SNR of lesions (p < 0.001) and posterior neck muscles (p < 0.001). Significantly higher CNRs were also observed in images with DL-based reconstruction (p < 0.001). CONCLUSION: DL-based image reconstruction integrating into the CS-based denoising cycle offered superior image quality compared to the conventional CS method. This technique will be useful for the assessment of patients with head and neck disease.


Subject(s)
Deep Learning , Humans , Retrospective Studies , Signal-To-Noise Ratio , Muscles , Magnetic Resonance Imaging/methods , Artifacts
13.
JAMA Neurol ; 81(2): 154-162, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38227308

ABSTRACT

Importance: Cell therapy is a promising treatment approach for stroke and other diseases. However, it is unknown whether MultiStem (HLCM051), a bone marrow-derived, allogeneic, multipotent adult progenitor cell product, has the potential to treat ischemic stroke. Objective: To assess the efficacy and safety of MultiStem when administered within 18 to 36 hours of ischemic stroke onset. Design, Setting, and Participants: The Treatment Evaluation of Acute Stroke Using Regenerative Cells (TREASURE) multicenter, double-blind, parallel-group, placebo-controlled phase 2/3 randomized clinical trial was conducted at 44 academic and clinical centers in Japan between November 15, 2017, and March 29, 2022. Inclusion criteria were age 20 years or older, presence of acute ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score of 8-20 at baseline), confirmed acute infarction involving the cerebral cortex and measuring more than 2 cm on the major axis (determined with diffusion-weighted magnetic resonance imaging), and a modified Rankin Scale (mRS) score of 0 or 1 before stroke onset. Data analysis was performed between May 9 and August 15, 2022. Exposure: Patients were randomly assigned to either intravenous MultiStem in 1 single unit of 1.2 billion cells or intravenous placebo within 18 to 36 hours of ischemic stroke onset. Main Outcomes and Measures: The primary end points were safety and excellent outcome at day 90, measured as a composite of a modified Rankin Scale (mRS) score of 1 or less, a NIHSS score of 1 or less, and a Barthel index score of 95 or greater. The secondary end points were excellent outcome at day 365, mRS score distribution at days 90 and 365, and mRS score of 0 to 1 and 0 to 2 at day 90. Statistical analysis of efficacy was performed using the Cochran-Mantel-Haenszel test. Results: This study included 206 patients (104 received MultiStem and 102 received placebo). Their mean age was 76.5 (range, 35-95) years, and more than half of patients were men (112 [54.4%]). There were no between-group differences in primary and secondary end points. The proportion of excellent outcomes at day 90 did not differ significantly between the MultiStem and placebo groups (12 [11.5%] vs 10 [9.8%], P = .90; adjusted risk difference, 0.5% [95% CI, -7.3% to 8.3%]). The frequency of adverse events was similar between treatment groups. Conclusions and Relevance: In this randomized clinical trial, intravenous administration of allogeneic cell therapy within 18 to 36 hours of ischemic stroke onset was safe but did not improve short-term outcomes. Further research is needed to determine whether MultiStem therapy for ischemic stroke has a beneficial effect in patients who meet specific criteria, as indicated by the exploratory analyses in this study. Trial Registration: ClinicalTrials.gov Identifier: NCT02961504.


Subject(s)
Brain Ischemia , Hematopoietic Stem Cell Transplantation , Ischemic Stroke , Stroke , Adult , Male , Humans , Aged , Young Adult , Female , Ischemic Stroke/complications , Brain Ischemia/complications , Stroke/drug therapy , Double-Blind Method , Stem Cell Transplantation , Treatment Outcome
14.
Jpn J Radiol ; 42(5): 450-459, 2024 May.
Article in English | MEDLINE | ID: mdl-38280100

ABSTRACT

PURPOSE: To develop a convolutional neural network (CNN) model to diagnose skull-base invasion by nasopharyngeal malignancies in CT images and evaluate the model's diagnostic performance. MATERIALS AND METHODS: We divided 100 malignant nasopharyngeal tumor lesions into a training (n = 70) and a test (n = 30) dataset. Two head/neck radiologists reviewed CT and MRI images and determined the positive/negative skull-base invasion status of each case (training dataset: 29 invasion-positive and 41 invasion-negative; test dataset: 13 invasion-positive and 17 invasion-negative). Preprocessing involved extracting continuous slices of the nasopharynx and clivus. The preprocessed training dataset was used for transfer learning with Residual Neural Networks 50 to create a diagnostic CNN model, which was then tested on the preprocessed test dataset to determine the invasion status and model performance. Original CT images from the test dataset were reviewed by a radiologist with extensive head/neck imaging experience (senior reader: SR) and another less-experienced radiologist (junior reader: JR). Gradient-weighted class activation maps (Grad-CAMs) were created to visualize the explainability of the invasion status classification. RESULTS: The CNN model's diagnostic accuracy was 0.973, significantly higher than those of the two radiologists (SR: 0.838; JR: 0.595). Receiver operating characteristic curve analysis gave an area under the curve of 0.953 for the CNN model (versus 0.832 and 0.617 for SR and JR; both p < 0.05). The Grad-CAMs suggested that the invasion-negative cases were present predominantly in bone marrow, while the invasion-positive cases exhibited osteosclerosis and nasopharyngeal masses. CONCLUSIONS: This CNN technique would be useful for CT-based diagnosis of skull-base invasion by nasopharyngeal malignancies.


Subject(s)
Deep Learning , Nasopharyngeal Neoplasms , Neoplasm Invasiveness , Tomography, X-Ray Computed , Humans , Nasopharyngeal Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Neoplasm Invasiveness/diagnostic imaging , Male , Middle Aged , Female , Aged , Adult , Skull Base/diagnostic imaging , Skull Base Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Sensitivity and Specificity , Retrospective Studies
15.
Ann Nucl Med ; 38(2): 131-138, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37943379

ABSTRACT

OBJECTIVE: Silicon photomultiplier-based positron emission tomography/computed tomography (SiPM-PET/CT) has the superior spatial resolution to conventional PET/CT (cPET/CT). This head-to-head comparison study compared the images of physiological 18F-fluorodeoxyglucose (FDG) accumulation in small-volume structures between SiPM-PET/CT and cPET/CT in patients scanned with both modalities, and we investigated whether the thresholds that are reported to be useful for differentiating physiological accumulations from malignant lesions can also be applied to SiPM-PET/CT. METHODS: We enrolled 21 consecutive patients with head and neck malignancies who underwent whole-body FDG-PET/CT for initial staging or a follow-up evaluation (October 2020 to March 2022). After being injected with FDG, all patients underwent PET acquisition on both Vereos PET-CT and Gemini TF64 PET-CT systems (both Philips Healthcare) in random order. For each patient, the maximum standardized uptake value (SUVmax) was measured in the pituitary gland, esophagogastric junction (EGJ), adrenal glands, lumbar enlargement of the spinal cord, and epididymis. We measured the liver SUVmean and the blood pool SUVmean to calculate the target-to-liver ratio (TLR) and the target-to-blood ratio (TBR), respectively. Between-groups differences in each variable were examined by a paired t-test. We also investigated whether there were cases of target uptake greater than the reported threshold for distinguishing pathological from physiological accumulations. RESULTS: Data were available for 19 patients. Ten patients were in Group 1, i.e., the patients who underwent SiPM-PET first, and the remaining nine patients who underwent cPET first were in Group 2. In the SiPM-PET results, the SUVmax of all targets was significantly higher than that obtained by cPET in all patients, and this tendency was also observed when the patients were divided into Groups 1/2. The TLRs of all targets were significantly higher in SiPM-PET than in cPET in all patients, and SiPM-PET also showed significantly higher TBRs for all targets except the EGJ (p = 0.052). CONCLUSIONS: The physiological uptake in the small structures studied herein showed high accumulation on SiPM-PET. Our results also suggest that the thresholds reported for cPET to distinguish pathological accumulations likely lead to false-positive findings in SIPM-PET evaluations.


Subject(s)
Fluorodeoxyglucose F18 , Head and Neck Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography , Liver
16.
Ann Neurol ; 95(4): 774-787, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38146238

ABSTRACT

OBJECTIVE: This study was undertaken to determine the excess risk of antithrombotic-related bleeding due to cerebral small vessel disease (SVD) burden. METHODS: In this observational, prospective cohort study, patients with cerebrovascular or cardiovascular diseases taking oral antithrombotic agents were enrolled from 52 hospitals across Japan between 2016 and 2019. Baseline multimodal magnetic resonance imaging acquired under prespecified conditions was assessed by a central diagnostic radiology committee to calculate total SVD score. The primary outcome was major bleeding. Secondary outcomes included bleeding at each site and ischemic events. RESULTS: Of the analyzed 5,250 patients (1,736 women; median age = 73 years, 9,933 patient-years of follow-up), antiplatelets and anticoagulants were administered at baseline in 3,948 and 1,565, respectively. Median SVD score was 2 (interquartile range = 1-3). Incidence rate of major bleeding was 0.39 (per 100 patinet-years) in score 0, 0.56 in score 1, 0.91 in score 2, 1.35 in score 3, and 2.24 in score 4 (adjusted hazard ratio [aHR] for score 4 vs 0 = 5.47, 95% confidence interval [CI] = 2.26-13.23), that of intracranial hemorrhage was 0.11, 0.33, 0.58, 0.99, and 1.06, respectively (aHR = 9.29, 95% CI = 1.99-43.35), and that of ischemic event was 1.82, 2.27, 3.04, 3.91, and 4.07, respectively (aHR = 1.76, 95% CI = 1.08-2.86). In addition, extracranial major bleeding (aHR = 3.43, 95% CI = 1.13-10.38) and gastrointestinal bleeding (aHR = 2.54, 95% CI = 1.02-6.35) significantly increased in SVD score 4 compared to score 0. INTERPRETATION: Total SVD score was predictive for intracranial hemorrhage and probably for extracranial bleeding, suggesting the broader clinical relevance of cerebral SVD as a marker for safe implementation of antithrombotic therapy. ANN NEUROL 2024;95:774-787.


Subject(s)
Cerebral Small Vessel Diseases , Stroke , Aged , Female , Humans , Anticoagulants , Cerebral Small Vessel Diseases/epidemiology , Fibrinolytic Agents/adverse effects , Hemorrhage , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/epidemiology , Prospective Studies , Stroke/epidemiology , Male
17.
Invest Radiol ; 59(1): 92-103, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37707860

ABSTRACT

ABSTRACT: Magnetic resonance imaging (MRI) is a crucial imaging technique for visualizing water in living organisms. Besides proton MRI, which is widely available and enables direct visualization of intrinsic water distribution and dynamics in various environments, MR-WTI (MR water tracer imaging) using 17 O-labeled water has been developed, benefiting from the many advancements in MRI software and hardware that have substantially improved the signal-to-noise ratio and made possible faster imaging. This cutting-edge technique allows the generation of novel and valuable images for clinical use. This review elucidates the studies related to MRI water tracer techniques centered around 17 O-labeled water, explaining the fundamental principles of imaging and providing clinical application examples. Anticipating continued progress in studies involving isotope-labeled water, this review is expected to contribute to elucidating the pathophysiology of various diseases related to water dynamics abnormalities and establishing novel imaging diagnostic methods for associated diseases.


Subject(s)
Magnetic Resonance Imaging , Software , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods
18.
MAGMA ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989922

ABSTRACT

OBJECTIVES: To investigate the utility of deep learning (DL)-based image reconstruction using a model-based approach in head and neck diffusion-weighted imaging (DWI). MATERIALS AND METHODS: We retrospectively analyzed the cases of 41 patients who underwent head/neck DWI. The DWI in 25 patients demonstrated an untreated lesion. We performed qualitative and quantitative assessments in the DWI analyses with both deep learning (DL)- and conventional parallel imaging (PI)-based reconstructions. For the qualitative assessment, we visually evaluated the overall image quality, soft tissue conspicuity, degree of artifact(s), and lesion conspicuity based on a five-point system. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the bilateral parotid glands, submandibular gland, the posterior muscle, and the lesion. We then calculated the contrast-to-noise ratio (CNR) between the lesion and the adjacent muscle. RESULTS: Significant differences were observed in the qualitative analysis between the DWI with PI-based and DL-based reconstructions for all of the evaluation items (p < 0.001). In the quantitative analysis, significant differences in the SNR and CNR between the DWI with PI-based and DL-based reconstructions were observed for all of the evaluation items (p = 0.002 ~ p < 0.001). DISCUSSION: DL-based image reconstruction with the model-based technique effectively provided sufficient image quality in head/neck DWI.

19.
J Cardiovasc Magn Reson ; 25(1): 60, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37880721

ABSTRACT

BACKGROUND: The differences in pre- and early post-procedural blood flow dynamics between the two major types of bioprosthetic valves, the balloon-expandable valve (BEV) and self-expandable valve (SEV), in patients with aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR), have not been investigated. We aimed to investigate the differences in blood flow dynamics between the BEV and SEV using four-dimensional flow cardiovascular magnetic resonance (4D flow CMR). METHODS: We prospectively examined 98 consecutive patients with severe AS who underwent TAVR between May 2018 and November 2021 (58 BEV and 40 SEV) after excluding those without CMR because of a contraindication, inadequate imaging from the analyses, or patients' refusal. CMR was performed in all participants before (median interval, 22 [interquartile range (IQR) 4-39] days) and after (median interval, 6 [IQR 3-6] days) TAVR. We compared the changes in blood flow patterns, wall shear stress (WSS), and energy loss (EL) in the ascending aorta (AAo) between the BEV and SEV using 4D flow CMR. RESULTS: The absolute reductions in helical flow and flow eccentricity were significantly higher in the SEV group compared in the BEV group after TAVR (BEV: - 0.22 ± 0.86 vs. SEV: - 0.85 ± 0.80, P < 0.001 and BEV: - 0.11 ± 0.79 vs. SEV: - 0.50 ± 0.88, P = 0.037, respectively); there were no significant differences in vortical flow between the groups. The absolute reduction of average WSS was significantly higher in the SEV group compared to the BEV group after TAVR (BEV: - 0.6 [- 2.1 to 0.5] Pa vs. SEV: - 1.8 [- 3.5 to - 0.8] Pa, P = 0.006). The systolic EL in the AAo significantly decreased after TAVR in both the groups, while the absolute reduction was comparable between the groups. CONCLUSIONS: Helical flow, flow eccentricity, and average WSS in the AAo were significantly decreased after SEV implantation compared to BEV implantation, providing functional insights for valve selection in patients with AS undergoing TAVR. Our findings offer valuable insights into blood flow dynamics, aiding in the selection of valves for patients with AS undergoing TAVR. Further larger-scale studies are warranted to confirm the prognostic significance of hemodynamic changes in these patients.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Predictive Value of Tests , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Hemodynamics , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Treatment Outcome , Prosthesis Design
20.
Clin Nucl Med ; 48(11): e523-e525, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37793180

ABSTRACT

ABSTRACT: MRI revealed a thoracic vertebrae lesion in a 40-year-old woman with back pain. She was referred to our institution; MRI demonstrated a mass from the second to the fifth thoracic vertebra and compression fractures. CT revealed a splenic mass, multiple pulmonary nodules, and low-density masses in the liver. 18 F-FDG PET/CT showed increased uptake (SUV max , 10.6) in the peripheral rim of the thoracic vertebra mass, with central parts showing lower uptake than the peripheral rim. The splenic mass exhibited increased accumulation (SUV max , 4.8). The thoracic spine lesion was fixed; a biopsy was performed. Alveolar echinococcosis was confirmed immunologically. Alveolar echinococcosis can present with bone lesions. It must be differentiated from malignancy.


Subject(s)
Echinococcosis , Neoplasms , Female , Humans , Adult , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Echinococcosis/diagnostic imaging , Thoracic Vertebrae
SELECTION OF CITATIONS
SEARCH DETAIL
...