Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 11(6): 753-759, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35594190

ABSTRACT

We demonstrate an experimental comparison of the bond lifetime, estimated using surface plasmon resonance (SPR), and the viscoelastic relaxation time of transient networks with well-controlled structures (dynamically cross-linked Tetra-PEG gel). SPR and viscoelastic measurements revealed that the temperature dependences of the two characteristic times are in agreement, while the viscoelastic response is delayed with respect to the lifetime by a factor of 2-3, dependent on the network strand length. Polymers cross-linked by temporary interactions form transient networks, which show fascinating viscoelasticity with a single relaxation mode. However, the molecular understanding of such simple viscoelasticity has remained incomplete because of the difficulty of experimentally evaluating bond lifetimes and heterogeneous structures in conventional transient networks. Our results suggest that bond dissociation and recombination both contribute to the macromechanical response. This report on direct bond-lifetime-viscoelastic-relaxation time comparison provides important information for the molecular design of transient network materials.


Subject(s)
Elasticity , Temperature , Viscosity
2.
Phys Rev Lett ; 127(23): 237801, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34936791

ABSTRACT

The swelling dynamics of polymer gels are characterized by the (collective) diffusion coefficient D of the polymer network. Here, we measure the temperature dependence of D of polymer gels with controlled homogeneous network structures using dynamic light scattering. An evaluation of the diffusion coefficient at the gelation point D_{gel} and the increase therein as the gelation proceeds ΔD≡D-D_{gel} indicates that ΔD is a linear function of the absolute temperature with a significantly large negative constant term. This feature is formally identical to the recently discovered "negative energy elasticity" [Y. Yoshikawa et al. Phys. Rev. X 11, 011045 (2021)PRXHAE2160-330810.1103/PhysRevX.11.011045], demonstrating a nontrivial similarity between the statics and dynamics of polymer networks.

3.
Molecules ; 25(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256076

ABSTRACT

The synthesis and characterization of two phthalocyanine (Pc) structural isomers, 1 and 2, in which four 2,6-di(hexyloxy)phenyl units were attached directly to the 1,8,15,22- or 1,4,15,18-positions of the Pc rings, are described. Both Pcs 1 and 2 exhibited low melting points, i.e., 120 and 130 °C respectively, due to the reduction in intermolecular π-π interaction among the Pc rings caused by the steric hindrance of 2,6-dihexyloxybenzene units. The thermal behaviors were investigated with temperature-controlled polarizing optical microscopy, differential scanning calorimetry, powder X-ray diffraction, and absorption spectral analyses. Pc 1, having C4h molecular symmetry, organized into a lamellar structure containing lateral assemblies of Pc rings. In contrast, the other Pc 2 revealed the formation of metastable crystalline phases, including disordered stacks of Pcs due to rapid cooling from a melted liquid.


Subject(s)
Indoles/chemistry , Models, Molecular , Molecular Conformation , Calorimetry, Differential Scanning , Isoindoles , Microscopy, Atomic Force , Molecular Structure , Structure-Activity Relationship , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...