Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 46(17): 4204-4207, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34469975

ABSTRACT

We study the formation of spatially dependent electromagnetically induced transparency (EIT) patterns from pairs of Laguerre-Gauss (LG) modes in an ensemble of cold interacting Rydberg atoms. The EIT patterns can be generated when two-photon detuning does not compensate for the Rydberg level energy shift induced by van der Waals interaction. Depending on the topological numbers of each LG mode, we can pattern dark and bright Ferris-wheel-like structures in the absorption profile with tunable barriers between sites, providing confinement of Rydberg atoms in transverse direction while rendering them transparent to light at specific angular positions. We also show how the atomic density may affect the azimuthal modulation of the absorption profile.

2.
Opt Express ; 27(5): 7699-7711, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30876330

ABSTRACT

A fraction of incident optical energy nonlinearly absorbed by a solid medium is considered to be the main quantitative parameter of damage-inducing light-matter interaction. However, its reliable experimental evaluation is a non-trivial task. We have addressed this problem using time-resolved digital holography. This well-proven technique enables recording of time-dependent single-shot induced thermal lens in fused silica excited at fluence levels above the damage threshold and constructing a detailed picture of the dissipation of nonlinearly absorbed optical energy. In addition, we explored the dependence between the absorbed laser pulse energy and incident energy. We found that material modification started to occur when the sample absorbed more than 10% of incident energy, while the absorbance above 15% resulted in catastrophic damage. The proposed approach is expected to become a convenient tool for future studies of light-matter interaction in transparent solids.

3.
Opt Express ; 26(22): 28249-28262, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470000

ABSTRACT

Recently a scheme has been proposed for detection of the structured light by measuring the transmission of a vortex beam through a cloud of cold rubidium atoms with energy levels of the Λ-type configuration [N. Radwell et al., Phys. Rev. Lett.114, 123603 (2015) ]. This enables observation of regions of spatially dependent electromagnetically induced transparency (EIT). Here we suggest another scenario for detection of the structured light by measuring the absorption profile of a weak nonvortex probe beam in a highly resonant five-level combined tripod and Λ (CTL) atom-light coupling setup. We demonstrate that due to the closed-loop structure of CTL scheme, the absorption of the probe beam depends on the azimuthal angle and orbital angular momentum (OAM) of the control vortex beams. This feature is missing in simple Λ or tripod schemes, as there is no loop in such atom-light couplings. One can identify different regions of spatially structured transparency through measuring the absorption of probe field under different configurations of structured control light.

4.
Nat Commun ; 5: 5542, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25417851

ABSTRACT

Slow light based on the effect of electromagnetically induced transparency is of great interest due to its applications in low-light-level nonlinear optics and quantum information manipulation. The previous experiments all dealt with the single-component slow light. Here, we report the experimental demonstration of two-component or spinor slow light using a double-tripod atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. On the basis of the stored light, our data showed that the double-tripod scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. We experimentally demonstrated a possible application of the double-tripod scheme as quantum memory/rotator for the two-colour qubit. Our study also suggests that the spinor slow light is a better method than a widely used scheme in the nonlinear frequency conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...