Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; : e202400095, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699866

ABSTRACT

Self-assembly of new donor-acceptor systems based on (5,10,15,20-tetraphenylporphinato)manganese(III)/(5,10,15,20-tetra-4-tert-butylphenylporphinato)manganese(III)/(octakis(4-tert-butylphenyl)tetraazaporphinato)manganese(III) acetate ((AcO)MnTPP/(AcO)MnTBPP/(AcO)MnTAP) and 4-(10-phenylanthracen-9-yl)pyridine (PyAn) was studied using fluorescence spectroscopy and mass spectrometry. It was found that the coordination complexes of 1 : 1 composition (dyads) are formed in toluene. The spectral properties, the chemical structures and redox behavior of the dyads were described using 1H NMR, IR, ESR spectroscopy and cyclic voltammetry, respectively. The dynamic processes and the characteristics in the excited state of the dyads were obtained using the femtosecond transient absorption spectroscopy method. Density functional theory (DFT), time-dependent DFT methods were used to elucidate the dyad electronic structures and to establish the differences in their frontier molecular orbitals. The analysis of the lambda parameter and the distance of hole-pair interaction was indicated more favorable charge transfer between the macrocycle and the axial PyAn fragment in (AcO)(PyAn)MnTAP. The calculated values of the zero-field splitting parameters D and E/D, together with the g tensors of the lowest spin-orbit state for (AcO)MnTPP and (AcO)(PyAn)MnTPP were obtained using the combination of DFT and Multireference Perturbation Theory (CASSCF/NEVPT2) simulations. The data obtained develop the fundamental basis in the field of photovoltaics and show the prospects for the study of molecular systems of this class.

2.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558032

ABSTRACT

The noncovalent interactions of (5,10,15,20-tetra(4-methylphenyl)porphinato)cobalt(II) (CoTTP) with C60 and 1-N-methyl-2-(pyridin-4-yl)-3,4-fullero[60]pyrrolidine (PyC60) were studied in toluene using absorption and fluorescence titration methods. The self-assembly in the 2:1 complexes (the triads) (C60)2CoTTP and (PyC60)2CoTTP was established. The bonding constants for (C60)2CoTTP and (PyC60)2CoTTP are defined to be (3.47 ± 0.69) × 109 and (1.47 ± 0.28) × 1010 M-2, respectively. 1H NMR, IR spectroscopy, thermogravimetric analysis and cyclic voltammetry data have provided very good support in favor of efficient complex formation in the ground state between fullerenes and CoTTP. PyC60/C60 fluorescence quenching in the PyC60/C60-CoTTP systems was studied and the fluorescence lifetime with various CoTTP additions was determined. The singlet oxygen quantum yield was determined for PyC60 and the intensity decrease in the 1O2 phosphorescence for C60 and PyC60 with the CoTTP addition leading to the low efficiency of intercombination conversion for the formation of the 3C60* triplet excited state was found. Using femtosecond transient absorption measurements in toluene, the photoinduced electron transfer from the CoTTP in the excited singlet state to fullerene moiety was established. Quantum chemical calculations were used for the determination of molecular structure, stability and the HOMO/LUMO energy levels of the triads as well as to predict the localization of frontier orbitals in the triads.

SELECTION OF CITATIONS
SEARCH DETAIL
...