Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 31(8): 1616-1631.e4, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33571434

ABSTRACT

The ability to group sensory stimuli into categories is crucial for efficient interaction with a rich and ever-changing environment. In olfaction, basic features of categorical representation of odors were observed as early as in the olfactory bulb (OB). Categorical representation was described in mitral cells (MCs) as sudden transitions in responses to odors that were morphed along a continuum. However, it remains unclear to what extent such response dynamics actually reflect perceptual categories and decisions therein. Here, we tested the role of learning on category formation in the mouse OB, using in vivo two-photon calcium imaging and behavior. We imaged MC responses in naive mice and in awake behaving mice as they learned two tasks with different classification logic. In one task, a one-decision-boundary task, animals learned to classify odor mixtures based on the dominant compound in the mixtures. As expected, categorical representation of odors, which was evident already in naive animals, further increased following learning. In a second task, a multi-decision-boundary task, animals learned to classify odors independent of their chemical similarity. Here, odor discrimination was based on the meaning ascribed to them (either rewarding or not). Following the multi-decision-boundary task, odor representations by MCs reorganized according to the odor value in the new category. This functional reorganization was also reflected as a shift from predominantly excitatory odor responses to predominantly inhibitory odor responses. Our data show that odor representations by MCs are flexible, are shaped by task demands, and carry category-related information.


Subject(s)
Olfactory Bulb , Olfactory Perception , Animals , Learning , Mice , Odorants/analysis , Reward , Smell
2.
Elife ; 62017 12 18.
Article in English | MEDLINE | ID: mdl-29251592

ABSTRACT

Microglia play important roles in perinatal neuro- and synapto-genesis. To test the role of microglia in these processes during adulthood, we examined the effects of microglia depletion, via treatment of mice with the CSF-1 receptor antagonist PLX5622, and abrogated neuronal-microglial communication in CX3C receptor-1 deficient (Cx3cr1-/-) mice. Microglia depletion significantly lowered spine density in young (developing) but not mature adult-born-granule-cells (abGCs) in the olfactory bulb. Two-photon time-lapse imaging indicated that microglia depletion reduced spine formation and elimination. Functionally, odor-evoked responses of mitral cells, which are normally inhibited by abGCs, were increased in microglia-depleted mice. In Cx3cr1-/- mice, abGCs exhibited reduced spine density, dynamics and size, concomitantly with reduced contacts between Cx3cr1-deficient microglia and abGCs' dendritic shafts, along with increased proportion of microglia-contacted spines. Thus, during adult neurogenesis, microglia regulate the elimination (pruning), formation, and maintenance of synapses on newborn neurons, contributing to the functional integrity of the olfactory bulb circuitry.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Cell Differentiation , Microglia/physiology , Neurogenesis , Olfactory Bulb/growth & development , Signal Transduction , Animals , CX3C Chemokine Receptor 1/genetics , Mice , Mice, Knockout , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...