Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Main subject
Publication year range
1.
ACS Nano ; 17(6): 6062-6072, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36916820

ABSTRACT

Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide InxSey by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of InxSey we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of InxSey. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm InxSey, namely InSe or ß-In2Se3, can be prepared. Additionally, in situ AC-TEM heating experiments reveal that encapsulated ß-In2Se3 undergoes a phase change to γ-In2Se3 above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components.

2.
Nanotechnology ; 34(12)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36595273

ABSTRACT

We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,ρ, on gate voltage,Vg, for a series of monolayer graphene field effect transistors with mobilities,µ, ranging between 5000 and 250 000 cm2V-1s-1at low-temperature. Our measurements over a wide range of temperatures from 4 to 400 K can be fitted by the universal relationµ=4/eδnmaxfor all devices, whereρmaxis the resistivity maximum at the neutrality point andδnis an 'uncertainty' in the bipolar carrier density, given by the full width at half maximum of the resistivity peak expressed in terms of carrier density,n. This relation is consistent with thermal broadening of the carrier distribution and the presence of the disordered potential landscape consisting of so-called electron-hole puddles near the Dirac point. To demonstrate its utility, we combine this relation with temperature-dependent linearised Boltzmann transport calculations that include the effect of optical phonon scattering. This approach demonstrates the similarity in the temperature-dependent behaviour of carriers in different types of single layer graphene transistors with widely differing carrier mobilities. It can also account for the relative stability, over a wide temperature range, of the measured carrier mobility of each device.

3.
Small ; 18(33): e2202661, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35863913

ABSTRACT

The family of van der Waals (vdW) materials is large and diverse with applications ranging from electronics and optoelectronics to catalysis and chemical storage. However, despite intensive research, there remains significant knowledge-gaps pertaining to their properties and interactions. One such gap is the interaction between these materials and hydrogen, a potentially vital future energy vector and ubiquitous processing gas in the semiconductor industry. This work reports on the interaction of hydrogen with the vdW semiconductor SnS2 , where molecular hydrogen (H2 ) and H-ions induce a controlled chemical conversion into semiconducting-SnS or to ß-Sn. This hydrogen-driven reaction is facilitated by the different oxidation states of Sn and is successfully applied to form SnS2 /SnS heterostructures with uniform layers, atomically flat interfaces and well-aligned crystallographic axes. This approach is scalable and offers a route for engineering materials at the nanoscale for semiconductor technologies based on the earth-abundant elements Sn and S, a promising result for a wide range of potential applications.

4.
Adv Mater ; 33(51): e2104658, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34642998

ABSTRACT

2D layered chalcogenide semiconductors have been proposed as a promising class of materials for low-dimensional electronic, optoelectronic, and spintronic devices. Here, all-2D van der Waals vertical spin-valve devices, that combine the 2D layered semiconductor InSe as a spacer with the 2D layered ferromagnetic metal Fe3 GeTe2 as spin injection and detection electrodes, are reported. Two distinct transport behaviors are observed: tunneling and metallic, which are assigned to the formation of a pinhole-free tunnel barrier at the Fe3 GeTe2 /InSe interface and pinholes in the InSe spacer layer, respectively. For the tunneling device, a large magnetoresistance (MR) of 41% is obtained under an applied bias current of 0.1 µA at 10 K, which is about three times larger than that of the metallic device. Moreover, the tunneling device exhibits a lower operating bias current but a more sensitive bias current dependence than the metallic device. The MR and spin polarization of both the metallic and tunneling devices decrease with increasing temperature, which can be fitted well by Bloch's law. These findings reveal the critical role of pinholes in the MR of all-2D van der Waals ferromagnet/semiconductor heterojunction devices.

5.
Molecules ; 25(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481752

ABSTRACT

The emergence of the hydrogen economy requires development in the storage, generation and sensing of hydrogen. The indium selenide ( γ -InSe) van der Waals (vdW) crystal shows promise for technologies in all three of these areas. For these applications to be realised, the fundamental interactions of InSe with hydrogen must be understood. Here, we present a comprehensive experimental and theoretical study on the interaction of γ -InSe with hydrogen. It is shown that hydrogenation of γ -InSe by a Kaufman ion source results in a marked quenching of the room temperature photoluminescence signal and a modification of the vibrational modes of γ -InSe, which are modelled by density functional theory simulations. Our experimental and theoretical studies indicate that hydrogen is incorporated into the crystal preferentially in its atomic form. This behaviour is qualitatively different from that observed in other vdW crystals, such as transition metal dichalcogenides, where molecular hydrogen is intercalated in the vdW gaps of the crystal, leading to the formation of "bubbles" for hydrogen storage.


Subject(s)
Hydrogen/chemistry , Hydrogen Bonding , Indium/chemistry , Nonlinear Optical Microscopy , Quantum Theory , Thermodynamics
6.
Nat Mater ; 19(3): 299-304, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32015532

ABSTRACT

Van der Waals (vdW) interfaces based on 2D materials are promising for optoelectronics, as interlayer transitions between different compounds allow tailoring of the spectral response over a broad range. However, issues such as lattice mismatch or a small misalignment of the constituent layers can drastically suppress electron-photon coupling for these interlayer transitions. Here, we engineered type-II interfaces by assembling atomically thin crystals that have the bottom of the conduction band and the top of the valence band at the Γ point, and thus avoid any momentum mismatch. We found that these van der Waals interfaces exhibit radiative optical transitions irrespective of the lattice constant, the rotational and/or translational alignment of the two layers or whether the constituent materials are direct or indirect gap semiconductors. Being robust and of general validity, our results broaden the scope of future optoelectronics device applications based on two-dimensional materials.

7.
ACS Nano ; 13(10): 11530-11537, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31487450

ABSTRACT

Although the topography of van de Waals (vdW) layers and heterostructures can be imaged by scanning probe microscopy, high-frequency interface elastic properties are more difficult to assess. These can influence the stability, reliability, and performance of electronic devices that require uniform layers and interfaces. Here, we use picosecond ultrasonics to image these properties in vdW layers and heterostructures based on well-known exfoliable materials, i.e., InSe, hBN, and graphene. We reveal a strong, uniform elastic coupling between vdW layers over a wide range of frequencies of up to tens of gigahertz (GHz) and in-plane areas of 100 µm2. In contrast, the vdW layers can be weakly coupled to their supporting substrate, behaving effectively as free-standing membranes. Our data and analysis demonstrate that picosecond ultrasonics offers opportunities to probe the high-frequency elastic coupling of vdW nanolayers and image both "perfect" and "broken" interfaces between different materials over a wide frequency range, as required for future scientific and technological developments.

8.
Nano Lett ; 19(9): 6475-6481, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31426634

ABSTRACT

Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have been focused mainly on the surface growth of molecules in high vacuum. Here, we report an approach to making 2D crystals of covalent solids by chemical conversion of van der Waals layers. As an example, we used 2D indium selenide (InSe) obtained by exfoliation and converted it by direct fluorination into indium fluoride (InF3), which has a nonlayered, rhombohedral structure and therefore cannot  possibly be obtained by exfoliation. The conversion of InSe into InF3 is found to be feasible for thicknesses down to three layers of InSe, and the obtained stable InF3 layers are doped with selenium. We study this new 2D material by optical, electron transport, and Raman measurements and show that it is a semiconductor with a direct bandgap of 2.2 eV, exhibiting high optical transparency across the visible and infrared spectral ranges. We also demonstrate the scalability of our approach by chemical conversion of large-area, thin InSe laminates obtained by liquid exfoliation, into InF3 films. The concept of chemical conversion of cleavable thin van der Waals crystals into covalently bonded noncleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.

9.
ACS Nano ; 13(5): 5112-5123, 2019 May 28.
Article in English | MEDLINE | ID: mdl-30946569

ABSTRACT

Two dimensional III-VI metal monochalcogenide materials, such as GaSe and InSe, are attracting considerable attention due to their promising electronic and optoelectronic properties. Here, an investigation of point and extended atomic defects formed in mono-, bi-, and few-layer GaSe and InSe crystals is presented. Using state-of-the-art scanning transmission electron microscopy, it is observed that these materials can form both metal and selenium vacancies under the action of the electron beam. Selenium vacancies are observed to be healable: recovering the perfect lattice structure in the presence of selenium or enabling incorporation of dopant atoms in the presence of impurities. Under prolonged imaging, multiple point defects are observed to coalesce to form extended defect structures, with GaSe generally developing trigonal defects and InSe primarily forming line defects. These insights into atomic behavior could be harnessed to synthesize and tune the properties of 2D post-transition-metal monochalcogenide materials for optoelectronic applications.

10.
Adv Sci (Weinh) ; 5(7): 1800257, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30027057

ABSTRACT

The controlled manipulation of the spin and charge of electrons in a semiconductor has the potential to create new routes to digital electronics beyond Moore's law, spintronics, and quantum detection and imaging for sensing applications. These technologies require a shift from traditional semiconducting and magnetic nanostructured materials. Here, a new material system is reported, which comprises the InSe semiconductor van der Waals crystal that embeds ferromagnetic Fe-islands. In contrast to many traditional semiconductors, the electronic properties of InSe are largely preserved after the incorporation of Fe. Also, this system exhibits ferromagnetic resonances and a large uniaxial magnetic anisotropy at room temperature, offering opportunities for the development of functional devices that integrate magnetic and semiconducting properties within the same material system.

11.
Nano Lett ; 18(6): 3950-3955, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29763556

ABSTRACT

Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications.

12.
Nat Nanotechnol ; 12(3): 223-227, 2017 03.
Article in English | MEDLINE | ID: mdl-27870843

ABSTRACT

A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V-1 s-1 and 104 cm2 V-1 s-1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.

14.
Sci Rep ; 6: 26970, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27256805

ABSTRACT

Van der Waals (vdW) layered crystals and heterostructures have attracted substantial interest for potential applications in a wide range of emerging technologies. An important, but often overlooked, consideration in the development of implementable devices is phonon transport through the structure interfaces. Here we report on the interface properties of exfoliated InSe on a sapphire substrate. We use a picosecond acoustic technique to probe the phonon resonances in the InSe vdW layered crystal. Analysis of the nanomechanics indicates that the InSe is mechanically decoupled from the substrate and thus presents an elastically imperfect interface. A high degree of phonon isolation at the interface points toward applications in thermoelectric devices, or the inclusion of an acoustic transition layer in device design. These findings demonstrate basic properties of layered structures and so illustrate the usefulness of nanomechanical probing in nanolayer/nanolayer or nanolayer/substrate interface tuning in vdW heterostructures.

15.
Adv Mater ; 27(25): 3760-6, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25981798

ABSTRACT

High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures is achieved by exploiting the broad-band transparency of graphene, the direct bandgap of InSe, and the favorable band line up of InSe with graphene. The photoresponsivity exceeds that for other van der Waals heterostructures and the spectral response extends from the near-infrared to the visible spectrum.

16.
Adv Mater ; 25(40): 5714-8, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-23966225

ABSTRACT

Strong quantization effects and tuneable near-infrared photoluminescence emission are reported in mechanically exfoliated crystals of γ-rhombohedral semiconducting InSe. The optical properties of InSe nanosheets differ qualitatively from those reported recently for exfoliated transition metal dichalcogenides and indicate a crossover from a direct to an indirect band gap semiconductor when the InSe flake thickness is reduced to a few nanometers.

SELECTION OF CITATIONS
SEARCH DETAIL
...