Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 14(1): 4828, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563106

ABSTRACT

One of the main characteristics of optical imaging systems is spatial resolution, which is restricted by the diffraction limit to approximately half the wavelength of the incident light. Along with the recently developed classical super-resolution techniques, which aim at breaking the diffraction limit in classical systems, there is a class of quantum super-resolution techniques which leverage the non-classical nature of the optical signals radiated by quantum emitters, the so-called antibunching super-resolution microscopy. This approach can ensure a factor of [Formula: see text] improvement in the spatial resolution by measuring the n -th order autocorrelation function. The main bottleneck of the antibunching super-resolution microscopy is the time-consuming acquisition of multi-photon event histograms. We present a machine learning-assisted approach for the realization of rapid antibunching super-resolution imaging and demonstrate 12 times speed-up compared to conventional, fitting-based autocorrelation measurements. The developed framework paves the way to the practical realization of scalable quantum super-resolution imaging devices that can be compatible with various types of quantum emitters.

3.
Nano Lett ; 20(5): 3663-3672, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32320257

ABSTRACT

Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300-600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic "nanofurnaces" capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10-21 L) volumetric precision, catalyzing C-C bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h-1 m-2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.

4.
Nanoscale ; 11(23): 11167-11172, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31149696

ABSTRACT

Active control over the flow of light is highly desirable because of its applicability to information processing, telecommunication, and spectroscopic imaging. In this paper, by employing the tunability of carrier density in a 1 nm titanium nitride (TiN) film, we numerically demonstrate deep phase modulation (PM) in an electrically tunable gold strip/TiN film hybrid metasurface. A 337° PM is achieved at 1.550 µm with a 3% carrier density change in the TiN film. We also demonstrate that a continuous 180° PM can be realized at 1.537 µm by applying a realistic experiment-based gate voltage bias and continuously changing the carrier density in the TiN film. The proposed design of active metasurfaces capable of deep PM near the wavelength of 1.550 µm has considerable potential in active beam steering, dynamic hologram generation, and flat photonic devices with reconfigurable functionalities.

5.
Nano Lett ; 19(6): 3796-3803, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31067061

ABSTRACT

The field of thermoplasmonics has thrived in the past decades because it uniquely provides remotely controllable nanometer-scale heat sources that have augmented numerous technologies. Despite the extensive studies on steady-state plasmonic heating, the dynamic behavior of the plasmonic heaters in the nanosecond regime has remained largely unexplored, yet such a time scale is indeed essential for a broad range of applications such as photocatalysis, optical modulators, and detectors. Here, we use two distinct techniques based on the temperature-dependent surface reflectivity of materials, optical thermoreflectance imaging (OTI) and time-domain thermoreflectance (TDTR), to comprehensively investigate plasmonic heating in both spatial and temporal domains. Specifically, OTI enables the rapid visualization of plasmonic heating with sub-micron resolution, outperforming a standard thermal camera, and allows us to establish the connection between the optical absorptance and heating efficiency as well as to analyze plasmonic heating dynamics on the millisecond scale. Using the TDTR technique, we, for the first time, study the optical resonance-dependent heat-transfer dynamics of a nanometer-scale plasmonic structure in the nanosecond regime and use a detailed computational model to extract the impulse response and thermal interface conductance of a multilayer plasmonic structure. The study reveals a quantitative relationship between the dimensions of the nanopatterned structure and its spatiotemporal thermal response to the light pulse excitation, a thermoplasmonic effect resulting from the spatial distribution of the absorbed electromagnetic energy. We also conclude that the two thermoreflectance techniques provide necessary feedback to nanoscale thermoplasmonic heat management, for which optimization in either heating power or temperature decay speed is needed.

6.
Nano Lett ; 14(5): 2726-9, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24697576

ABSTRACT

Light beams with orbital angular momentum have significant potential to transform many areas of modern photonics from imaging to classical and quantum communication systems. We design and experimentally demonstrate an ultracompact array of nanowaveguides with a circular graded distribution of channel diameters that coverts a conventional laser beam into a vortex with an orbital angular momentum. The proposed nanoscale beam converter is likely to enable a new generation of on-chip or all-fiber structured light applications.

7.
Opt Lett ; 38(21): 4288-91, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24177075

ABSTRACT

Opposite directionality of the Poynting vector and the wave vector, an inherent property of negative index metamaterials (NIMs), was predicted to enable backward phase-matching condition for a second harmonic generation (SHG) process. As a result, such a nonlinear negative index slab acts as a nonlinear mirror. In this Letter, we predict that SHG with structured light carrying orbital angular momentum (OAM) and propagating in NIMs results in a possibility of generating a backward propagating beam with simultaneously doubled frequency, OAM, and reversed rotation direction of the wavefront. These results may find applications in high-dimensional communication systems, quantum information processing, and optical manipulation on a nanoscale.

8.
Nat Commun ; 4: 2557, 2013.
Article in English | MEDLINE | ID: mdl-24084779

ABSTRACT

Microwave beam transmission and manipulation in the atmosphere is an important but difficult task. One of the major challenges in transmitting and routing microwaves in air is unavoidable divergence because of diffraction. Here we introduce and design virtual hyperbolic metamaterials (VHMMs) formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in air. Hyperbolic, or indefinite, metamaterials are photonic structures that possess permittivity and/or permeability tensor elements of opposite sign with respect to one another along principal axes, resulting in a strong anisotropy. Our proof-of-concept results confirm that the proposed virtual hyperbolic metamaterial structure can be used for efficient beam collimation and for guiding radar signals around obstacles, opening a new paradigm for electromagnetic wave manipulation in air.

SELECTION OF CITATIONS
SEARCH DETAIL
...