Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930247

ABSTRACT

The paper presents the study concerning the preparation and physio-chemical and biological properties of wool-copper (WO-Cu) materials obtained by the sputter deposition of copper onto the wool fibers. The WO-Cu material was subjected to physio-chemical and biological investigations. The physio-chemical investigations included the elemental analysis of materials (C, N, O, S, and Cu), their microscopic analysis, and surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of the antimicrobial activity tests of the WO-Cu materials against colonies of Gram-positive (Staphylococcus aureus) bacteria, Gram-negative (Escherichia coli) bacteria, and fungal mold species (Chaetomium globosum). Biochemical-hematological tests included the evaluation of the activated partial thromboplastin time and pro-thrombin time. The tested wool-copper demonstrated the ability to interact with the DNA in a time-dependent manner. These interactions led to the DNA's breaking and degradation. The antimicrobial and antifungal activities of the WO-Cu materials suggest a potential application as an antibacterial/antifungal material. Wool-copper materials may be also used as customized materials where the blood coagulation process could be well controlled through the appropriate copper content.

2.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730835

ABSTRACT

Biological wastewater treatment using trickle bed reactors is a commonly known and used solution. One of the key elements of the proper operation of the trickle bed bioreactor is the appropriate selection of biofilm support elements. The respective properties of the bioreactor packing media used can influence, among other things, the efficiency of the treatment process. In this study, the possibility of polyester waste material usage for the preparation of the biofilm support elements was tested. The following properties were checked: adsorption capacity, swelling, surface morphology, microbicidal properties, as well as the possibility of their use in biological wastewater treatment. The tested elements did not adsorb copper nor showed microbicidal properties for bacterial strains Escherichia coli and Staphylococcus aureus as well as fungal strains Aspergillus niger and Chaetomium globosum. The hydrophilic and rough nature of the element surface was found to provide a friendly support for biofilm formation. The durability of the elements before and after their application in the biological treatment process was confirmed by performing tests such as compressive strength, FTIR analysis, hardness analysis and specific surface area measurement. The research confirmed the applicability of the packing elements based on polyester textile waste to the treatment of textile wastewater. The treatment efficiency of the model wastewater stream was above 90%, while in the case of a stream containing 60% actual industrial wastewater it was above 80%. The proposed solution enables the simultaneous management of textile waste and wastewater treatment, which is consistent with the principles of a circular economy. The selected waste raw material is a cheap and easily available material, and the use of the developed packing elements will reduce the amount of polyester materials ending up in landfills.

3.
Materials (Basel) ; 17(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38591465

ABSTRACT

The paper presents the investigation of the biological properties of Poly(Lactide)-Copper composite material obtained by sputter deposition of copper onto Poly(lactide) melt-blown nonwoven fabrics. The functionalized composite material was subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, Chaetomium globosum and Candida albicans fungal mold species and biochemical-hematological tests including the evaluation of the Activated Partial Thromboplastin Time, Prothrombin Time, Thrombin Time and electron microscopy fibrin network imaging. The substantial antimicrobial and antifungal activities of the Poly(Lactide)-Copper composite suggests potential applications as an antibacterial/antifungal material. The unmodified Poly(Lactide) fabric showed accelerated human blood plasma clotting in the intrinsic pathway, while copper plating abolished this effect. Unmodified PLA itself could be used for the preparation of wound dressing materials, accelerating coagulation in the case of hemorrhages, and its modifications with the use of various metals might be applied as new customized materials where blood coagulation process could be well controlled, yielding additional anti-pathogen effects.

4.
Materials (Basel) ; 17(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38541509

ABSTRACT

The paper presents the new eco-friendly method of bleaching process of the cellulose fibre materials. Cellulose materials were bleached using hydrogen peroxide (both in aqueous solution, vapours, ozone and by the combined action of gaseous hydrogen peroxide and ozone. The method using hydrogen peroxide in aqueous solution presents the standard procedure and was used as the comparison technique. The bleaching processes using gaseous oxidants were carried out in a prototype device for dry, low-temperature treatment of fibrous materials with the use of oxidising agents in the gas phase. The influence of the innovative gas-phase bleaching method on the cotton samples' properties was analysed by Scanning Electron Microscopy (SEM), evaluation of the colour and whiteness, assessment of the polymerisation degree (DP), analysis of the mechanical properties and sorption capacity as well as microbiological assessment against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The comparison of the obtained results led to the conclusion that the bleaching processes using gas-phase agents-vaporised hydrogen peroxide, ozone or their combination-are non-invasive. The applied bleaching processes resulted in a slightly lower whiteness parameters than standard bath bleaching. After the bleaching processes with ozone and vaporised hydrogen peroxide separately, the decrease in the DP and tensile strength was similar to that observed after the bleaching with aqueous H2O2. When both processes were used together, a higher reduction in DP and tensile strength was noticed. Both oxidising agents showed a strong biocidal effect against bacteria. Gas-phase bleaching procedures, due to the lower temperature (35 °C vs. 98 °C) and minimal water consumption, have economic and environmental advantages, which allows their use in semi-industrial applications. It has been shown that the treatment of cotton fabrics using ozone and hydrogen peroxide in the gas phase allows to simultaneously obtain the bleaching and disinfection effect.

5.
Mar Drugs ; 21(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38132946

ABSTRACT

Alginate-based materials have gained significant attention in the medical industry due to their biochemical properties. In this article, we aimed to synthesize Cotton-Alginate-Copper Composite Materials (COT-Alg(-)Cu(2+)). The main purpose of this study was to assess the biochemical properties of new composites in the area of blood plasma coagulation processes, including activated partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin time (TT). This study also involved in vitro antimicrobial activity evaluation of materials against representative colonies of Gram-positive and Gram-negative bacteria and antifungal susceptibility tests. The materials were prepared by immersing cotton fibers in an aqueous solution of sodium alginate, followed by ionic cross-linking of alginate chains within the fibers with Cu(II) ions to yield antimicrobial activity. The results showed that the obtained cotton-alginate-copper composites were promising materials to be used in biomedical applications, e.g., wound dressing.


Subject(s)
Alginates , Copper , Copper/chemistry , Alginates/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Blood Coagulation , Prothrombin Time , Partial Thromboplastin Time , Ions/pharmacology
6.
Materials (Basel) ; 16(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37629939

ABSTRACT

Literature reviews have described the applications of silver, copper, and zinc ions and metallic particles of Cu, Ti, and Zn oxides, which have been found to be useful antimicrobial reagents for the biofunctionalization of various materials and their surfaces. For this purpose, compositions of water dispersions containing emulsions of synthetic copolymers based on acrylic and vinyl monomers, polysaccharides (hydroxyethyl cellulose and starch), and various additives with wetting and stabilizing properties were used. Many stable water dispersions of different chemical compositions containing bioactive chemical compounds (copper silicate hydrate, titanium dioxide, and zinc oxide (and other auxiliary substances)) were developed. They were used for the preparation of thin hybrid coatings having good antimicrobial properties against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and yeast fungus (Candida albicans). Polyester (PES) and polylactide (PLA) nonwovens were modified using the dip-coating method, while PES and cotton fabrics were biofunctionalized by means of dip-coating and coating methods. The antimicrobial (antibacterial and antifungal) properties of the textile materials (nonwovens and fabrics) biofunctionalized with the above-mentioned bioactive agents exhibiting antimicrobial properties (CuSiO3, TiO2, ZnO, or ZnO∙SiO2) were strongly dependent on the agents' content in the water dispersions. The PES and PLA nonwovens, modified on the surface with water compositions containing copper silicate hydrate, showed good antibacterial properties against the Gram-negative bacteria Escherichia coli, even at a content of 1 wt.% CuSiO3∙xH2O, and against the Gram-positive bacteria Staphylococcus aureus, at the content of at least 5 wt.% CuSiO3∙xH2O. The bacterial growth reduction factor (R) was greater than 99% for most of the samples tested. Good antifungal properties against the fungus Candida albicans were found for the PES and PLA nonwoven fabrics modified with dispersions containing 5-7 wt.% CuSiO3∙xH2O and 4.2-5.0 wt.% TiO2. The addition of TiO2 led to a significant improvement in the antifungal properties of the PES and PLA nonwovens modified in this way. For the samples of PES WIFP-270 and FS F-5 nonwovens, modified with water dispersions containing 5.0 wt.% CuSiO3∙xH2O and 4.2-5.0 wt.% TiO2, the growth reduction factor for the fungus Candida albicans (R) reached values in the range of 80.9-98.0%. These new biofunctionalized polymeric nonwoven textile materials can find practical applications in the manufacture of filters for hospital air-conditioning systems and for the automotive industry, as well as in air purification devices. Moreover, similar antimicrobial modification of fabrics with the dip-coating or coating methods can be applied, for example, in the fabrication of fungi- and mold-resistant garden furniture.

7.
Materials (Basel) ; 17(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38204025

ABSTRACT

Plastics have recently become an indispensable part of everyone's daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of biodegradation, and a negative impact on living organisms. Decomposing plastics lead to the formation of microplastics, which accumulate in the environment and living organisms, becoming part of the food chain. The contamination of soils and water with poly(vinyl chloride) (PVC) seriously threatens ecosystems around the world. Their durability and low weight make microplastic particles easily transported through water or air, ending up in the soil. Thus, the problem of microplastic pollution affects the entire ecosystem. Since microplastics are commonly found in both drinking and bottled water, humans are also exposed to their harmful effects. Because of existing risks associated with the PVC microplastic contamination of the ecosystem, intensive research is underway to develop methods to clean and remove it from the environment. The pollution of the environment with plastic, and especially microplastic, results in the reduction of both water and soil resources used for agricultural and utility purposes. This review provides an overview of PVC's environmental impact and its disposal options.

8.
Materials (Basel) ; 15(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35454445

ABSTRACT

The aim of this investigation was to evaluate the biological properties of cotton-zinc composites. A coating of zinc (Zn) on a cotton fabric was successfully obtained by a DC magnetron sputtering system using a metallic Zn target (99.9%). The new composite was characterized using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), UV/Vis transmittance, and atomic absorption spectrometry with flame excitation (FAAS). The composite was tested for microbial activity against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and antifungal activity against Aspergillus niger and Chaetomium globosum fungal mold species as model microorganisms. Cytotoxicity screening of the tested modified material was carried out on BALB/3T3 clone mouse fibroblasts. The SEM/EDS and FAAS tests showed good uniformity of zinc content on a large surface of the composite. The conducted research showed the possibility of using the magnetron sputtering technique as a zero-waste method for producing antimicrobial textile composites.

9.
Membranes (Basel) ; 12(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35207072

ABSTRACT

The influence of various factors on the removal efficiency of selected pharmaceuticals by membrane filtration was investigated. Several commercial polymer membranes were used for nanofiltration (NF) from various manufacturers. The studies were conducted for ibuprofen (IBF), amoxicillin (AMX), diclofenac (DCF), tetracycline (TRC), salicylic acid (SA) and acetylsalicylic acid (ASA). The influence of the structure and properties of the tested compounds on the retention coefficient and filtration rate was investigated. The influence of pH on the filtration parameters was also checked. The properties of selected membranes influencing the retention of pharmaceuticals and filtrate flux were analysed. An extensive analysis of the retention coefficients dependence on the contact angle and surface free energy was performed. It was found that there is a correlation between the hydrophilicity of the membrane and the effectiveness and efficiency of the membrane. As the contact angle of membrane increased, the flow rate of the filtrate stream increased, while the retention coefficient decreased. The studies showed that the best separation efficiency was achieved for compounds with a molecular weight (MW) greater than 300 g/mol. During the filtration of pharmaceuticals with MW ranging from 300 to 450 g/mol, the type of membrane used practically did not affect the filtration efficiency and a high degree of retention was achieved. In the case of low MW molecules (SA and ASA), a significant decrease in the separation efficiency during the process was noted.

10.
Antibiotics (Basel) ; 10(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34827265

ABSTRACT

The aim of this study was to investigate an antimicrobial and degradable composite material consisting of melt-blown poly(lactic acid) nonwoven fabrics, alginate, and zinc. This paper describes the method of preparation and the characterization of the physicochemical and antimicrobial properties of the new fibrous composite material. The procedure consists of fabrication of nonwoven fabric and two steps of dip-coating modification: (1) impregnation of nonwoven samples in the solution of alginic sodium salt and (2) immersion in a solution of zinc (II) chloride. The characterization and analysis of new material included scanning electron microscopy (SEM), specific surface area (SSA), and total/average pore volume (BET). The polylactide/alginate/Zn fibrous composite were subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli) bacterial strains, and the following fungal strains: Aspergillus niger van Tieghem and Chaetomium globosum. These results lay a technical foundation for the development and potential application of new composite as an antibacterial/antifungal material in biomedical areas.

11.
J Funct Biomater ; 12(1)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652627

ABSTRACT

Skin regeneration requires a three-dimensional (3D) scaffold for cell adhesion, growth and proliferation. A type of the scaffold offering a 3D structure is a nonwoven material produced via a melt-blown technique. Process parameters of this technique can be adapted to improve the cellular response. Polylactic acid (PLA) was used to produce a nonwoven scaffold by a melt-blown technique. The key process parameters, i.e., the head and air temperature, were changed in the range from 180-270 °C to obtain eight different materials (MB1-MB8). The relationships between the process parameters, morphology, porosity, thermal properties and the cellular response were explored in this study. The mean fiber diameters ranged from 3 to 120 µm. The average material roughness values were between 47 and 160 µm, whereas the pore diameters ranged from 5 to 400 µm. The calorimetry thermograms revealed a correlation between the temperature parameters and crystallization. The response of keratinocytes and macrophages exhibited a higher cell viability on thicker fibers. The cell-scaffold interaction was observed via SEM after 7 days. This result proved that the features of melt-blown nonwoven scaffolds depended on the processing parameters, such as head temperature and air temperature. Thanks to examinations, the most suitable scaffolds for skin tissue regeneration were selected.

12.
Antibiotics (Basel) ; 10(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669752

ABSTRACT

This research is focused on a synthesis of copper-cellulose phosphates antimicrobial complexes. Vapor-phase phosphorylations of cellulose were achieved by exposing microcrystalline cellulose to phosphorus trichloride (PCl3) vapors. The cellulose-O-dichlorophosphines (Cell-O-PCl2) formed were hydrolyzed to cellulose-O-hydrogenphosphate (P(III)) (Cell-O-P(O)(H)(OH)), which, in turn, were converted into corresponding copper(II) complexes (Cell-O-P(O)(H)(OH)∙Cu2+). The analysis of the complexes Cell-O-P(O)(H)(OH)∙Cu2+ covered: scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), atomic absorption spectrometry with flame excitation (FAAS), and bioactivity tests against representative Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). The antimicrobial tests of synthesized Cell-O-P(O)(H)(OH)∙Cu2+ revealed their potential applications as an antibacterial material.

13.
Mar Drugs ; 18(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371380

ABSTRACT

In recent years, due to an expansion of antibiotic-resistant microorganisms, there has been growing interest in biodegradable and antibacterial polymers that can be used in selected biomedical applications. The present work describes the synthesis of antimicrobial polylactide-copper alginate (PLA-ALG-Cu2+) composite fibers and their characterization. The composites were prepared by immersing PLA fibers in aqueous solution of sodium alginate, followed by ionic cross-linking of alginate chains within the polylactide fibers with Cu(II) ions to yield PLA-ALG-Cu2+ composite fibers. The composites, so prepared, were characterized by scanning electron microscopy (SEM), UV/VIS transmittance and attenuated total reflection Fourier-transform infrared spectroscopy ATR-FTIR, and by determination of their specific surface area (SSA), total/average pore volumes (through application of the 5-point Brunauer-Emmett-Teller method (BET)), and ability to block UV radiation (determination of the ultraviolet protection factor (UPF) of samples). The composites were also subjected to in vitro antimicrobial activity evaluation tests against colonies of Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria and antifungal susceptibility tests against Aspergillus niger and Chaetomium globosum fungal mold species. All the results obtained in this work showed that the obtained composites were promising materials to be used as an antimicrobial wound dressing.


Subject(s)
Alginates/chemistry , Alginates/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Alginates/analysis , Anti-Infective Agents/analysis , Aspergillus niger/drug effects , Aspergillus niger/physiology , Drug Evaluation, Preclinical/methods , Escherichia coli/drug effects , Escherichia coli/physiology , Microbial Sensitivity Tests/methods , Microscopy, Electron, Scanning/methods , Polyesters/analysis , Spectroscopy, Fourier Transform Infrared/methods , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
14.
Materials (Basel) ; 13(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911707

ABSTRACT

The paper presents the method of synthesis; physico-technical and biological characterization of a new composite material (PLA-Cu0) obtained by sputter deposition of copper on melt-blown poly(lactide) (PLA) non-woven fabrics. The analysis of these biofunctionalized non-woven fabrics included: ultraviolet/visible (UV/VIS) transmittance; scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS); attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy; ability to block UV radiation; filtration parameters (air permeability); and tensile testing. The functionalized non-woven composite materials were subjected to antimicrobial tests against colonies of Gram-negative (Escherichia coli), Gram-positive (Staphylococcus aureus) bacteria and antifungal tests against the Chaetomium globosum fungal mould species. The antibacterial and antifungal activity of PLA-Cu0 suggests potential applications as an antimicrobial material.

15.
Polymers (Basel) ; 12(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244602

ABSTRACT

This research is focused on obtaining antimicrobial hybrid materials consisting of poly(lactide) nonwoven fabrics and using phosphoro-organic compound-fosfomycin-as a coating and modifying agent. Polylactide (PLA) presents biodegradable polymer with multifunctional application, widely engaged in medical related areas. Fosfomycin as functionalized phosphonates presents antibiotic properties expressed by broad spectrum of antimicrobial properties. The analysis of these biofunctionalized nonwoven fabrics processed by the melt-blown technique, included: scanning electron microscopy (SEM), UV/VIS transmittance, FTIR spectrometry, air permeability. The functionalized nonwovens were tested on microbial activity tests against colonies of gram-positive (Staphylococcus aureus) and gram-negative(Escherichia coli) bacteria.

16.
Molecules ; 23(4)2018 Apr 09.
Article in English | MEDLINE | ID: mdl-29642559

ABSTRACT

The alkaline deacylation of a representative series of 1-(acylamino)alkylphosphonic acids [(AC)-AAP: (AC) = Ac, TFA, Bz; AAP = GlyP, AlaP, ValP, PglP and PheP] in an aqueous solution of KOH (2M) was investigated. The results suggested a two-stage reaction mechanism with a quick interaction of the hydroxyl ion on the carbonyl function of the amide R-C(O)-N(H)- group in the first stage, which leads to instant formation of the intermediary acyl-hydroxyl adducts of R-C(O-)2-N(H)-, visible in the 31P NMR spectra. In the second stage, these intermediates decompose slowly by splitting of the RC(O-)2-N(H)- function with the subsequent formation of 1-aminoalkylphosphonate and carboxylate ions.


Subject(s)
Amino Acids/chemistry , Organophosphonates/chemistry , Acylation , Hydroxides/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Structure , Thermodynamics , Water/chemistry
17.
Chirality ; 30(2): 131-140, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29272065

ABSTRACT

The first successful enantioseparation of representative O,O-diphenyl-N-arylthioureidoalkylphosphonates, (±)-Ptc-ValP (OPh)2 & (±)-Ptc-LeuP (OPh)2 and thiourylenedi(isobutyl phosphonate), Tcm[ValP (OPh)2 ]2 on analytical and semipreparative scale was achieved by high-performance liquid chromatography using polysaccharide-based chiral stationary phases (CPs). Atc-AAP (OPh)2 was obtained using modified tricomponent condensations of the corresponding aldehydes, N-arylthiourea and triphenyl phosphite whereas Tcm[ValP (OPh)2 ]2 by the condensations of aldehydes, thiourea, and triphenyl phosphite. The prepared, racemic (±)-Atc-AAP (OPh)2 [(±)-Ptc-ValP (OPh)2 , (±)-Ptc-LeuP (OPh)2 , (±)-Ptc-PglyP (OPh)2 and (±)-Ntc-PglyP (OPh)2 ] and racemic (±)-Tcm[AAP (OPh)2 ]2 [(±)-Tcm[NvaP (OPh)2 ]2 & (±)-Tcm[ValP (OPh)2 ]2 ] were adequately characterized and used for chromatographic separations on high-performance liquid chromatography-chiral stationary phases. The best results were obtained for (±)-Ptc-ValP (OPh)2 , (±)-Ptc-LeuP (OPh)2 and (±)-Tcm[ValP (OPh)2 ]2 .

18.
Biologicals ; 46: 74-80, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28108210

ABSTRACT

The purpose of the study was to confirm whether collagen-based scaffolds using different cross-linking methods are suitable elaborate environments for embryonic nerve cell culture. Three 3D sponge-shaped porous scaffolds were composed using collagen alone, collagen with chondroitin sulphate modified by 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride, and collagen cross-linked by 2,3-dialdehyde cellulose (DAC). Embryonic nerve cells from rats were applied to the scaffolds and stained with bisbenzimide to study cell entrapment within the scaffolds. The metabolic activity of the cells cultured in the scaffolds was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The majority of cells were differentiated into neurocytes or oligodendrocytes. Collagen and collagen-chondroitin sulphate scaffolds entrapped a low number of cells. The highest cell density was found in the collagen-DAC scaffold. Moreover, in collagen-DAC scaffolds, the metabolic activity was markedly higher than in the other samples. Although all used scaffolds are suitable for the culture of embryonic nerve cells, the collagen-DAC scaffold properties are the most favorable. This scaffold entraps the highest number of cells and constitutes a favorable environment for their culture. Hence, the Col-DAC scaffold is recommended as an effective carrier for embryonic nerve cells.


Subject(s)
Collagen/metabolism , Neurons/physiology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cells, Cultured , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Collagen/chemistry , Embryo, Mammalian/cytology , Female , Neurons/cytology , Oligodendroglia/cytology , Oligodendroglia/physiology , Porosity , Pregnancy , Rats , Reproducibility of Results , Swine , Time Factors
19.
Int J Biol Macromol ; 92: 1298-1306, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27519295

ABSTRACT

The design and selection of a suitable scaffold with well-defined pores size distribution and dielectric properties are critical features for neural tissue engineering. In this study we use mercury porosimetry and the dielectric spectroscopy in the alpha-dispersion region of the electric field to determine the microarchitecture and activation energy of collagen (Col) modified by 2,3 dialdehyde cellulose (DAC). The scaffold was synthesized in three steps: (i) preparation of DAC by oxidation of cellulose, (ii) construction of a 3D Col sponge-shape or film, (iii) cross-linkage of the Col samples using DAC. The activation energy needed to break the bonds formed by water in the Col-DAC composite is approximately 2 times lower than that in the unmodified Col. In addition, the magnitude of conductivity for modified Col at 70°C is approximately 40% lower than that recorded for the unmodified Col. The largest fraction, of which at least 70% of the total pore volume comprises the sponge, is occupied by pores ranging from 20 to 100µm in size. The knowledge on the dielectric behaviour and microstructure of the Col-DAC scaffold may prove relevant to neural tissue engineering focused on the regeneration of the nervous system.


Subject(s)
Cellulose/analogs & derivatives , Collagen Type I/chemistry , Tissue Scaffolds , Animals , Cellulose/chemistry , Collagen Type I/isolation & purification , Dielectric Spectroscopy , Electric Conductivity , Nerve Tissue/growth & development , Oxidation-Reduction , Porosity , Surface Properties , Swine , Tendons/chemistry , Thermodynamics , Tissue Engineering
20.
Dalton Trans ; 45(5): 2308-17, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26631424

ABSTRACT

The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine.

SELECTION OF CITATIONS
SEARCH DETAIL
...