Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7154, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935679

ABSTRACT

Internal modifications of mRNA have emerged as widespread and versatile regulatory mechanism to control gene expression at the post-transcriptional level. Most of these modifications are methyl groups, making S-adenosyl-L-methionine (SAM) a central metabolic hub. Here we show that metabolic labeling with a clickable metabolic precursor of SAM, propargyl-selenohomocysteine (PSH), enables detection and identification of various methylation sites. Propargylated A, C, and G nucleosides form at detectable amounts via intracellular generation of the corresponding SAM analogue. Integration into next generation sequencing enables mapping of N6-methyladenosine (m6A) and 5-methylcytidine (m5C) sites in mRNA with single nucleotide precision (MePMe-seq). Analysis of the termination profiles can be used to distinguish m6A from 2'-O-methyladenosine (Am) and N1-methyladenosine (m1A) sites. MePMe-seq overcomes the problems of antibodies for enrichment and sequence-motifs for evaluation, which was limiting previous methodologies. Metabolic labeling via clickable SAM facilitates the joint evaluation of methylation sites in RNA and potentially DNA and proteins.


Subject(s)
RNA , S-Adenosylmethionine , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA/metabolism , Methylation , S-Adenosylmethionine/metabolism , Antibodies/metabolism
2.
Methods Enzymol ; 658: 161-190, 2021.
Article in English | MEDLINE | ID: mdl-34517946

ABSTRACT

The RNA methyltransferase (MTase) complex METTL3-METTL14 transfers methyl groups from S-adenosyl-l-methionine (AdoMet) to the N6-position of adenosines within its consensus sequence, the DRACH motif (D=A, G, U; R=A, G; H=A, C, U). Interestingly, this MTase complex shows remarkable promiscuity regarding the cosubstrate. This can be exploited to install nonnatural modifications, like clickable or photocaging groups. Clickable groups are widely used for subsequent functionalization and open a broad range of possibilities for downstream applications. Here, we elaborate on click chemistry for coupling of RNA to biotin to enrich MTase targets via streptavidin-coated magnetic beads. Importantly, after clicking and coupling to beads the modification becomes sterically demanding and stalls reverse transcriptases, leading to termination adjacent to the MTase target site. Using radioactively labeled primers in the reverse transcription, the modified position can be precisely identified on a sequencing gel via phosphor imaging.


Subject(s)
Methyltransferases , RNA , Adenosine , Methionine , Methyltransferases/genetics , S-Adenosylmethionine
3.
Chem Sci ; 11(11): 3089-3095, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-33623655

ABSTRACT

Live imaging of mRNA in cells and organisms is important for understanding the dynamic aspects underlying its function. Ideally, labeling of mRNA should not alter its structure or function, nor affect the biological system. However, most methods applied in vivo make use of genetically encoded tags and reporters that significantly enhance the size of the mRNA of interest. Alternately, we utilize the 3' poly(A) tail as a non-coding repetitive hallmark to covalently label mRNAs via bioorthogonal chemistry with different fluorophores from a wide range of spectra without significantly changing the size. We demonstrate that the labeled mRNAs can be visualized in cells and zebrafish embryos, and that they are efficiently translated. Importantly, the labeled mRNAs acquired the proper subcellular localization in developing zebrafish embryos and their dynamics could be tracked in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...