Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(21): e2210154, 2023 May.
Article in English | MEDLINE | ID: mdl-36857624

ABSTRACT

Here, low-energy poly(ethylene terephthalate) (PET) chemical recycling in water: PET copolymers with diethyl 2,5-dihydroxyterephthalate (DHTE) undergo selective hydrolysis at DHTE sites, autocatalyzed by neighboring group participation, is demonstrated. Liberated oligomeric subchains further hydrolyze until only small molecules remain. Poly(ethylene terephthalate-stat-2,5-dihydroxyterephthalate) copolymers were synthesized via melt polycondensation and then hydrolyzed in 150-200 °C water with 0-1 wt% ZnCl2 , or alternatively in simulated sea water. Degradation progress follows pseudo-first order kinetics. With increasing DHTE loading, the rate constant increases monotonically while the thermal activation barrier decreases. The depolymerization products are ethylene glycol, terephthalic acid, 2,5-dihydroxyterephthalic acid, and bis(2-hydroxyethyl) terephthalate dimer, which could be used to regenerate virgin polymer. Composition-optimized copolymers show a decrease of nearly 50% in the Arrhenius activation energy, suggesting a 6-order reduction in depolymerization time under ambient conditions compared to that of PET homopolymer. This study provides new insight to the design of polymers for end-of-life while maintaining key properties like service temperature and mechanical properties. Moreover, this chemical recycling procedure is more environmentally friendly compared to traditional approaches since water is the only needed material, which is green, sustainable, and cheap.

2.
ACS Appl Mater Interfaces ; 14(41): 46912-46919, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36201621

ABSTRACT

Here, we spearhead a new approach to biopolymer impact modification that demonstrates superior performance while maintaining greater than 99% compostability. Using soybean-based monomers, a virtually untapped resource in terms of commercial volume and overall cost, a series of hyperbranched block copolymers were synthesized and melt-processed with poly(l-lactide) (PLA) to yield impact resistant all-polymer composites. Although PLA impact modification has been treated extensively, to date, the only practical solutions have relied on non-compostable petroleum-based rubbers. This study illustrates the activity of energy dissipation mechanisms such as cavitation, classically relegated to well-entangled petroleum-based rubbers, in poorly entangled hyperbranched soybean-based rubbers. Furthermore, we present a complete study of the mechanical performance and morphology of these impact modified PLA composites. The significance of combining deformation theory with a scalable green alternative to petroleum-based rubbers opens up a potential avenue for cheap compostable engineering thermoplastics.

SELECTION OF CITATIONS
SEARCH DETAIL
...