Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 120(6): 2199-2218, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33963899

ABSTRACT

Leishmaniasis is considered a neglected disease, which makes it an unattractive market for the pharmaceutical industry; hence, efforts in the search for biologically active substances are hampered by this lack of financial motivation. Thus, in the present study, we report the leishmanicidal activity and the possible mechanisms of action of compounds with promising activity against the species Leishmania (V.) braziliensis, the causative agent of the skin disease leishmaniasis. The natural compound 1a (piplartine) and the analog 2a were the most potent against promastigote forms with growth inhibition values for 50% of the parasite population (IC50) = 8.58 and 11.25 µM, respectively. For amastigote forms, the ICa50 values were 1.46 and 16.7 µM, respectively. In the molecular docking study, piplartine showed favorable binding energy (-7.13 kcal/mol) and with 50% inhibition of trypanothione reductase (IC50) = 91.1 µM. Preliminary investigations of the mechanism of action indicate that piplartine increased ROS levels, induced loss of cell membrane integrity, and caused accumulation of lipid bodies after 24 h of incubation at its lowest effective concentration (IC50), which was not observed for the synthetic analog 2a. The mode of action for the leishmanicidal activity of piplartine (1a) was assigned to involve affinity for the trypanothione reductase of Leishmania (V.) braziliensis TR.


Subject(s)
Amides/pharmacology , Leishmania braziliensis/drug effects , Piperidones/pharmacology , Trypanocidal Agents/pharmacology , Amides/chemistry , Animals , Cell Line, Tumor , Chlorocebus aethiops , Computer Simulation , Humans , Molecular Docking Simulation , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Piperidones/chemistry , Vero Cells
2.
Parasitology ; 141(7): 904-13, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24552620

ABSTRACT

Acute Chagas disease outbreaks are related to the consumption of food or drink contaminated by triatomine feces, thus making oral infection an important route of transmission. Both vector-borne and oral infections trigger important cardiac manifestations in the host that are related to a dysregulated immune response. The aims of this work were to evaluate possible alterations of lymphocyte CD4+/CD8+ sub-populations, Th1 and Th2 cytokines, nitrite concentrations and cardiac histopathology. One group of male Wistar rats was intraperitoneally infected (I.P.) with 1×105 metacyclic trypomastigotes of the T. cruzi Y strain, and another group of Wistar rats was orally infected (O.I.) with 8×105 metacyclic trypomastigotes of the same strain. The intraperitoneal infection triggered statistically enhanced parasite and peritoneal macrophage numbers, increased concentrations of NO and IL-12 and elevated cardiac inflammatory foci when compared with the oral infection. However, proliferation of CD4+ and CD8+ T cells were not statistically different for oral and intraperitoneal routes.


Subject(s)
Chagas Disease/parasitology , Cytokines/metabolism , Trypanosoma cruzi/classification , Animals , Gene Expression Regulation , Male , Parasitemia , Rats , Rats, Wistar , T-Lymphocyte Subsets , Time Factors
3.
Vet Parasitol ; 177(3-4): 242-6, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21255931

ABSTRACT

DHEA, a steroid hormone synthesized from cholesterol by cells of the adrenal cortex, plays an essential role in enhancing the host's resistance to different experimental infections. Receptors for this hormone can be found in distinct immune cells (especially macrophages) that are known to be the first line defense against Trypanosoma cruzi infection. These cells operate through an indirect pathway releasing nitric oxide (NO) and cytokines such TNF-α and IL-12 which in turn trigger an enhancement of natural killer cells and lymphocytes which finally secrete pro and anti-inflammatory cytokines. The effects of pre- and post-infection DHEA treatment on production of IL-12, TNFα and NO were evaluated. T. cruzi infected macrophages post treated with DHEA displayed enhanced concentrations of TNF-α, IL-12 and NO. Probably, the mechanisms that induced the production of cytokines by infected cells are more efficient when the immune system has been stimulated first by parasite invasion, suggesting that the protective role of DHEA is greater when administered post infection.


Subject(s)
Chagas Disease/immunology , Dehydroepiandrosterone/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Trypanosoma cruzi/immunology , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Interleukin-12/immunology , Macrophages, Peritoneal/immunology , Male , Nitric Oxide/immunology , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/immunology
4.
J Pineal Res ; 47(3): 253-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19732300

ABSTRACT

Previous studies showed that melatonin or dehydroepiandrosterone (DHEA) enhances the immune response against parasitic pathogens. The present study investigated the in vitro activity of melatonin combined with DHEA in a period of 24 hr during the course of in vivo T. cruzi infection. The in vitro activity of melatonin or DHEA alone, as well as together, were tested for the trypomastigote forms (doses ranging from 0.5 to 128 microm). In vitro, neither melatonin nor DHEA alone had any activity against trypomastigote forms, although when the highest concentration of combined melatonin and DHEA was used, it was active against the trypomastigote forms of the parasite. However, for this concentration, a quite toxicity on peritoneal macrophages was observed. For in vivo evaluation, male Wistar rats were infected with the Y strain of T. cruzi. They were orally treated with 10 mg/kg body weight/day of melatonin and subcutaneously with 40 mg/kg body weight/day of DHEA. Treatment with melatonin, DHEA and the association showed a significant reduction in the number of blood trypomastigotes during the acute phase of infection as compared to untreated animals (P < 0.05). A significant increase in the number of macrophages and nitric oxide (NO) concentrations were observed during the peak of parasitaemia with melatonin alone or combined with DHEA. However, with DHEA alone the highest concentration of NO was observed (P < 0.05). Moreover, DHEA treatment increased TNF-alpha levels during the infection (P < 0.05). These results show that melatonin, DHEA or the combination of both reduces parasitemia during the acute phase of infection. The combined action of both molecules did not exert a synergic action on the host's ability to fight infection, and it seems that among all treatments DHEA induces a more efficient immune response.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Antioxidants/therapeutic use , Chagas Disease/drug therapy , Dehydroepiandrosterone/therapeutic use , Melatonin/therapeutic use , Trypanosoma cruzi/drug effects , Animals , Drug Combinations , Drug Synergism , Macrophages/drug effects , Macrophages/metabolism , Male , Parasitemia/drug therapy , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...